主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于Tsallis分布及跳扩散过程的欧式期权定价

展开
  • 1. 上海理工大学管理学院, 上海 200093;
    2. 皖西学院金融与数学学院, 安徽 六安 237012;
    3. 晥西学院金融风险智能控制与预警研究中心, 安徽 六安 237012
赵攀(1980-),男(汉族),安徽砀山人,上海理工大学管理学院,博士生,研究方向:金融工程.

收稿日期: 2014-03-01

  修回日期: 2013-03-01

  网络出版日期: 2015-07-22

基金资助

国家自然科学基金资助项目(11171221);上海市一流学科(系统科学)项目(XTKX2012);安徽省高校优秀青年基金项目(2012SQRL196);安徽高等学校省级自然科学研究项目(KJ2011B210)

Pricing of European Options Based on Tsallis Distribution and Jump-diffusion Process

Expand
  • 1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. College of Finance and Mathematics, West Anhui University, Lu'an 237012, China;
    3. Financial Risk Intelligent Control and Prevention Institute of West Anhui Vniversity, Lv'an 237012, China

Received date: 2014-03-01

  Revised date: 2013-03-01

  Online published: 2015-07-22

摘要

准确描述资产价格的运行规律是进行衍生产品定价及风险控制的基础。受金融市场外部环境的影响,资产收益率常常具有尖峰厚尾和偏尾的现象,为了准确地描述资产价格的运动规律,本文利用具有长程记忆及统计反馈性质的Tsallis熵分布和一类更新过程,建立了跳-反常扩散的股票价格运动模型。利用随机微分和鞅方法,在风险中性的条件下,得到了欧式期权的定价公式,该公式推广了文献11和21的相应结论。最后,利用上证指数数据分别计算出了各模型的参数以及对资产收益率拟合的平均绝对误差,数据分析结果表明本文模型与文献11和21相比其平均绝对误差分别减小了10.4%和25.1%。说明了本文模型对资产收益率尖峰厚尾及偏尾等现象的捕捉更为准确。

本文引用格式

赵攀, 肖庆宪 . 基于Tsallis分布及跳扩散过程的欧式期权定价[J]. 中国管理科学, 2015 , 23(6) : 41 -48 . DOI: 10.16381/j.cnki.issn1003-207x.201.06.006

Abstract

The accurate description of the motion law of asset prices is the foundation of pricing and controlling risk of derivatives. The distribution of yields often has a peak, fat or skewed tail, because of influence of the external environment of financial market. Tsallis distribution has the characteristics of long-term memory and statistical feedback. So, the peak or fat tail of yields can be captured, through fitting non-extensive parameter qof Tsallis distribution. In addition, asymmetric jump processes can fit the skewed tail of returns. Tsallis distribution and renewal jump process are employed in this paper, then, an abnormal jump diffusion model of share price movements is established. In the risk-neutral condition, the pricing formulas of European options were obtained by using the stochastic differential and martingale method. But, in the literature of Merton[11], the model employed the Poisson jump process and normal distribution. The literature of Borland[21] only used Tsallis distribution without considering the skewed tail of yields. Therefore, they were included in our model as special cases. Using the actual data of China's shanghai index, the parameters of the models and the mean absolute error of yields are calculated,respectively. The results showed that the mean absolute error of our model was reduced respectively by 10.4% and 25.1% compared with ones of the literature 11 and 21.It explained that our model can fit accurately the motion law of asset prices. In addition, our model can also be used to price or measure and control risk of other derivatives, such as warrants and other types of options.

参考文献

[1] Black F. Scholes M. The pricing of options and corporate liabilities[J]. Joumal of political Eco-nomy, 1973,81(3):133-155.

[2] Fama E F. The behavior of stock market prices[J]. Journal of Business, 1965, 38(1): 34-105.

[3] Mandelbrot B B. Fractional Brownian motions, fractional noises and applications[J]. SIAM review, 1968, 10(4): 422-437.

[4] Mandelbrot B B. Fractals and scaling in finance: Discontinuity, concentration, risk[M]. New York: Springer Verlag, 1997.

[5] Beben M, Ohowski A. Correlations in financial time series: Established versus emerging markets[J]. Eur. Phys. J.B, 2001, 20(4): 527-530.

[6] Lo A W. Long term memory in stock market prices[J]. Econometria, 1991, 59(5):1279-1313.

[7] Evertsz C J G. Fractal geometry of financial time series[J]. Fractals, 1995,3(3):609-616.

[8] Necula C. Option pricing in a fractional Brownian motion environment[R].Working Paper, Academy of Economic Studies, 2002.

[9] Xiao Weilin, Zhang Weiguo, Zhang Xili, et al. Pricing currency options in a fractional Brownian motion with jumps[J]. Economic Modelling, 2010, 27(5):935-942.

[10] Gu Hui, Liang Jinrong, Zhang Yunxiu. Time-changed geometric fractional Brownian motion and option pricing with transaction costs[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391 (15):3971-3977.

[11] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics,1976, 3(1):125-144.

[12] 刘国买, 邹捷中,陈超.服从多种形式跳过程的期权定价模型[J].数量经济技术经济研究,2004,(4):110-114.

[13] 黄学军,吴冲锋.不确定环境下研发投资决策的期权博弈模型[J].中国管理科学,2006,14(5):33-37.

[14] Tsallis C.Possible generalization of Boltzmann-Gibbs statistics[J].Journal of Statistical Physics,1988,52(1):479-487.

[15] Rak R, Drozdz S, Kwapień J.Non-extensive statistical features of the Polish stock market fluctuations[J].Physica A, 2007, 374(1): 315-324.

[16] Kozaki M, Sato A H.Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment[J]. Physica A, 2008, 387(5): 1225-1246.

[17] Queirós S M D, Moyano L G, de Souza J, et al.A non-extensive approach to the dynamics of financial observables[J].The European Physical,2007, 55(2): 161-167.

[18] Biró T S, Rosenfeld R, Journal B.Microscopic origin of non-Gaussian distributions of financial returns[J]. Physica A, 2008, 387(7): 1603-1612.

[19] Ishizaki R,Inoue M. Time-series analysis of foreign exchange rates using time-dependent pattern entropy[J]. Physica A, 2013, 392(16):3344-3350.

[20] Tapiero O J. A maximum (non-extensive) entropy approach to equity options bid-ask spread[J]. Physica A, 2013, 392(14): 3051-3060.

[21] Borland L. A theory of non-Gaussian option pricing[J].Quantitative Finance, 2002, 2(6):415-431.

[22] Katz Y A, Li Tian. q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations[J]. Physica A, 2013, 392(20): 4989-4996.
文章导航

/