主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于CAViaR模型的汇率隔夜风险研究

展开
  • 华中科技大学经济学院, 湖北 武汉 430074
简志宏(1968-),男(汉族),四川泸州人,华中科技大学经济学院教授,博士生导师,研究方向:金融风险管理、宏观经济政策评价.

收稿日期: 2014-05-01

  修回日期: 2014-11-24

  网络出版日期: 2015-07-22

基金资助

中央高校基本科研业务费资助(2015AA012)

The Overnight Risk of Exchange Rate Research Based on CAViAR

Expand
  • School of Economics, Huazhong University of Science and Technology, Hubei 430074, China

Received date: 2014-05-01

  Revised date: 2014-11-24

  Online published: 2015-07-22

摘要

针对目前缺乏美元当日汇率对其他汇率市场隔夜风险影响的研究,本文在CAViaR模型中的AS模型和SAV模型基础上提出隔夜-AS模型和隔夜-SAV模型来测量汇率隔夜风险,并对日元汇率,人民币汇率和港币汇率2009年到2014年的数据进行实证分析,研究结果表明隔夜-AS模型和隔夜-SAV模型均优于AS模型和SAV模型,且隔夜-AS模型又优于隔夜-SAV模型。这三个汇率的隔夜风险均受到滞后风险的影响,且人民币汇率所受滞后风险最大,美元指数的波动都将加大这三个汇率市场的隔夜风险,美元对日元和港币汇率的冲击大于对人民币汇率的冲击,美元走弱对这三个市场隔夜风险影响大于美元走强所带来的影响,这些都为我国汇率隔夜风险的管理提供了新的方法和思路。

本文引用格式

简志宏, 彭伟 . 基于CAViaR模型的汇率隔夜风险研究[J]. 中国管理科学, 2015 , 23(6) : 17 -24 . DOI: 10.16381/j.cnki.issn1003-207x.201.06.003

Abstract

Currently, there is little quantitative analysis literature about the impact of dollar exchange rate on the overnight of other markets. Overnight-AS model and Overnight-SAV model are proposed in this article to measure the overnight risk of exchange rate based on AS mode and SAV model of CAViaR. Then these models are used to measure the risk of Yen exchange rate, HK exchange rate and RMB exchange rate,which select from 2009 to 2014 and then the pros and cons of each model are compared. The results show that Overnight-AS model and Overnight-SAV model are better than AS model and SAV model. Overnight-AS model is better than Overnight-SAV model. The overnight risk of these three exchange rates are affected by lag risks and RMB exchange rate are suffered the biggest risk. Fluctuations in the dollar index will increase the overnight market rates of these three risks. The impact of the RMB exchange rate by the dollar index is less than HK exchange rate and Yen exchange rate. The impact of the weaker dollar on overnight risk is greater than the impact of the stronger dollar. New ideas and methods for the management of exchange rate overnight risk are provided in this paper.

参考文献

[1] Srideep G, Janice B. Nominal exchange rate volatility, relative price volatility and the real exchange rate[J]. Journal of International Money and Finance,2010,3(29):840-856.

[2] 郭飞. 外汇风险对冲和公司价值——基于中国跨国公司的实证研究[J]. 经济研究,2012,11(9):18-31.

[3] 吴刘杰. 汇率风险与银行业超额收益[J]. 金融论坛,2012,22(9):18-25.

[4] Du Ding,Hu Ou. Exchange rate risk in the US stock market[J]. Journal of International Financial Markets, Institutions & Money,2012,22(1):137-150.

[5] Arnold I J M,MacDonald R,de Vries C G.IMF support and inter regime exchange rate volatility[J]. Open Econ Rev,2012,23(1):193-211.

[6] David P. Gauging exchange rate targeting[J]. Journal of International Money and Finance,2014,25(43):155-166.

[7] Koenker R. Regression quantiles[J]. Econometrica,1978,64(1):33-50.

[8] Engle R, Manganelli. CAViaR: Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business and Economic Statistics,2004,34(4):367-381.

[9] James W. Generating volatility forecasts from value at risk estimates[J]. Management Science,2005,65(51):712-725.

[10] Keith K, Stefan M,Marc S. Value-at-risk prediction: A comparison of alternative strategies[J]. Journal of Financial Econometrics,2006,34(4):53-89.

[11] 陈功. 基于CAViaR的DCC模型及其对中国股市的实证研究[J]. 数学实践与认识,2009,11(2):75-81.

[12] Allen D, Powell L. A gourmet's delight: CAViaR and the australian stock market[J]. Applied Economics Letters,2012,22(19):1493-1498.

[13] 张颖. 分位数回归的金融风险度量理论及实证[J]. 数量经济技术经济研究,2012,87(4):95-109.

[14] Kuster L. Value-at-risk Prediction: A comparison of alternative strategies[J]. Journal of Financial Econometrics,2006,41(4):53-89.

[15] 王新宇,宋学锋. 间接 TARCH CAViaR 模型及其 MCMC 参数估计与应用[J]. 系统工程理论与实践,2008,5(9):46-51.

[16] Taylor W. Using exponentially weighted quantile regression to estimate value at risk and expected shortfall[J]. Journal of Financial Econometrics,2008,54(6): 382-406

[17] Frank J, Masao F. CAViaR-based forecast for oil price risk[J]. Energy Economics,2009,76(31):511-518

[18] 王新宇,宋学锋,吴瑞明. 基于 AAVS-CAViaR模型的股市风险测量研究[J]. 系统工程学报,2010,44(6): 326-333.

[19] Sergio F, Masao F, Zudi L. Index-exciting CAViaR: A new empirical time varying risk model[J]. Studies in Nonlinear Dynamics & Econometrics,2010,68(14):38-52.

[20] Yu P L H,Li W K,Jin Shusong. On some models for value-at-risk[J]. Econometric Reviews,2010,51(29): 622-641.

[21] 闫昌荣. 基于流动性调整CAViaR模型的风险度量方法[J].数量经济技术经济研究,2012,20(3):21-33.

[22] 陈磊,曾勇,杜化宇. 石油期货收益率的分位数建模及其影响因素分析[J]. 中国管理科学,2012,20(6):35-40.

[23] Richard H, Cathy W S. Bayesian time-varying quantile forecasting for value at risk in financial markets[J]. Journal of Business & Economic Statistics,2012,43(29):481-492.

[24] Taylor W. Using CAViaR models with implied volatility for value-at-risk estimation[J]. Journal of Forecasting, 2013,22(32):62-74.
文章导航

/