多阶段投资组合评价是目前研究的热点问题,本文将交易成本考虑进去,构建了考虑交易成本的多阶段投资组合优化模型,基于真实前沿面定义了投资组合的效率并构建了相应的非线性模型进行计算。针对非线性模型难以求解及真实前沿面解析解难以获得等问题,本文证明了前沿面函数为凹函数,进而利用DEA模型的前沿面来逼近真实前沿面并估计多阶段投资组合的效率,最后通过仿真分析验证了本文方法的有效性。
Multi-period portfolio evaluation is a hot topic in financial studies. By taking transaction costs into consideration, a multi-period portfolio optimization model is proposed. Based on the real frontier, the definition of multi-period portfolio efficiency and the corresponding nonlinear model are constructed. Due to the lack of analytical solutions of frontier and difficulties in solving the nonlinear model, it is proved that the true portfolio frontier is concave, and then DEA model is used to approximate the frontier and estimate the efficiencies of multi-period portfolios with transaction costs. The validity of the proposed method is illustrated by simulation in the end.
[1] Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91.
[2] Mossin J. Optimal multiperiod portfolio policies[J]. Journal of Business, 1968, 41(2): 215-229.
[3] Dumas B, Luciano E. An exact solution to a dynamic portfolio choice problem under transactions costs[J]. The Journal of Finance, 1991, 46(2): 577-595.
[4] Pliska S R. Introduction to mathematical finance[M]. Oxford UK: Blackwell publishers, 1997.
[5] Li Duan, Ng W L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation[J]. Mathematical Finance, 2000, 10(3): 387-406.
[6] 宿洁,刘家壮.多阶段资产投资的动态规划决策模型[J].中国管理科学, 2001, 9(3): 55-61.
[7] Sun Jun, Fang Wei, Wu Xiaojun, et al.Solving the multi-stage portfolio optimization problem with a novel particle swarm optimization[J]. Expert Systems with Applications, 2011, 38(6): 6727-6735.
[8] Liu Yongjun, Zhang Weiguo, Zhang Pu. A multi-period portfolio selection optimization model by using interval analysis[J]. Economic Modelling, 2013, 33: 113-119.
[9] KaminJ H. Optimal portfolio revision with a proportional transaction cost[J]. Management Science. 1975, 21(11), 1263-1271.
[10] Yi Lan. Multi-period portfolio selection with transaction costs[C].Proceedings of 2nd IEEE International Conference on Information and Financial Engineering,Chongqing,China,September 17-19,2010.
[11] Zhang Weiguo, Liu Yongjun, Xu Weijun. A possibilistic mean-semi variance-entropy model for multi-period portfolio selection with transaction costs[J]. European Journal of Operational Research, 2012, 222(2): 341-349.
[12] Wang Zhen, Liu Sanyang. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs[J]. Journal of industrial and management optimization, 2013, 9(3): 643-657.
[13] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European journal of operational research, 1978, 2(6): 429-444.
[14] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management Science, 1984, 30(9): 1078-1092.
[15] Calafiore G C. Multi-period portfolio optimization with linear control policies[J]. Automatica, 2008, 44(10): 2463-2473.