如何将一定数量的资源在一组决策单元中进行有效地分摊是决策者在实际工作中常面临的问题。本文将决策单元看作系统,研究系统内部为平行结构的资源分摊方法。在将待分摊的资源作为一种新的独立投入要素的前提下,采用数据包络分析(DEA,data envelopment analysis)方法得到能够使得所有的总系统和子平行系统同时达到Pareto有效状态(效率值为1)的资源分摊方案集,并确定每个子平行系统的有效分摊区间。进而定义效用函数以反映各子平行系统对分摊额的满意程度,并基于满意度max-min公平原则和Pareto有效原则建立资源分摊模型。最后通过我国2008年31个省市或地区三大产业的相关数据验证了资源分摊模型的有效性,具有一定的理论与现实指导意义。
Decision makers are often faced with how to allocate a certain amount of resources among peer Decision Making Units (DMUs) effectively in practice. Considering DMUs as systems, this paper focuses on the resource allocation with considering the system structure consisted of a series of parallel subsystems. Treating the allocated resource as a new independent input to DMUs, the allocations ensuring all overall systems and parallel subsystems pareto efficient simultaneously (efficiency values equal to 1) is obtained by employing data envelopment analysis (DEA), and then the efficient interval of allocation for the parallel subsystem is confirmed. The utility function is defined to reflect the satisfaction degree of parallel subsystems to the resource allocation. The final resource allocation model is proposed based on the principles of max-min fairness for satisfaction degrees and Pareto efficient. Finally, the validity of the proposed resource allocation model is demonstrated by the data of the three main industries of 31 provinces or regions in China in 2008. It has theoretical and practical guiding significance in some extent.
[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978,2(6):429-444.
[2] Cook W D, Seiford L M. Data envelopment analysis (DEA)-Thirty years on[J]. European Journal of Operational Research, 2009, 192(1): 1-17.
[3] Oral M, Kettani O, Lang P. A methodology for collective evaluation and selection of industrial R&D projects[J]. Management Science, 1991, 37(7): 871-885.
[4] Golany B, Pillips F Y, Rousseau J J. Models for improved effectiveness based on DEA efficiency results[J]. IIE Transactions, 1993, 25(6): 2-10.
[5] Golany B, Tamir E. Evaluating efficiency-effectiveness-equity trade-offs: A data envelopment analysis approach[J]. Management Science, 1995, 41(7): 1172-1184.
[6] Beasley J E. Allocating fixed costs and resources via data envelopment analysis[J]. European Journal of Operational Research, 2003, 147(1): 198-216.
[7] Korhonen P, Syrjnen M. Resource allocation based on efficiency analysis[J]. Management Science, 2004, 50(8): 1134-1144.
[8] Pachkova E V. Restricted reallocation of resources[J]. European Journal of Operational Research, 2009, 196(3): 1049-1057.
[9] 崔明娟, 蔡晨, 计雷, 等. 探索用双层数据包络方法对我国商业银行分理处及其资源重组进行评价[J]. 中国管理科学, 2000, 8(51): 597-601.
[10] 吴华清, 梁樑, 杨锋, 等. 一类基于投入约束的资源配置DEA博弈模型[J]. 系统工程,2009, 27(10): 104-107.
[11] 毕功兵, 梁樑, 杨锋. 资源约束型两阶段生产系统的DEA效率评价模型[J]. 中国管理科学, 2009, 17(2): 71-75.
[12] Bi Gongbing, Ding Jingjing, Luo Yan, et al. Resource allocation and target setting for parallel production system based on DEA[J]. Applied Mathematical Modelling, 2011, 35(9): 4270-4280.
[13] Bertsiimas D, Fariaas V F, Trichakis N. The price of fairness[J]. Operations Research,2011,59(1):17-31.
[14] 盛昭翰, 朱乔, 吴广谋. DEA理论、方法与应用[M]. 北京: 科学出版社, 1996.
[15] Cook W D, Zhu J. Multiple variable proportionality in date envelopment analysis[J]. Operations Research, 2011, 59(1): 1024-1032.
[16] Li Yongjun, Yang Min, Chen Ya, et al. Allocating a fixed cost based on data envelopment analysis and satisfaction degree[J]. Omega, 2013, 41(1): 55-60.