1 |
IEA. CO2 emissions in 2022[EB/OL].(2023-03-01)[2024-09-27] .
|
2 |
习近平.在第七十五届联合国大会一般性辩论上的讲话[J].中华人民共和国国务院公报,2020(28):5-7.
|
|
Xi J P. Speech at the general debate of the 75th session of the United Nations General Assembly[J]. Gazette of the State Council of the People's Republic of China, 2020(28): 5-7.
|
3 |
习近平.关于《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》的说明[N].人民日报,2020-11-04(2).
|
|
Xi J P. The exposition on ‘The Recommendations of the CPC Central Committee for formulating the 14th Five-Year Plan for Economic and Social Development and Long-Range Objectives Through the Year 2035’ [N]. People's Daily, 2020-11-04(2).
|
4 |
Grossman G M, Krueger A B. Environmental impacts of a north American free trade agreement[J]. CEPR Discussion Papers,1992,8(2):223-250.
|
5 |
Zhang Y, Chen X, Wu Y,et al. The environmental Kuznets curve of CO2 emissions in the manufacturing and construction industries:A global empirical analysis[J]. Environmental Impact Assessment Review, 2019, 79(11):106303.
|
6 |
吴振信, 谢晓晶, 王书平. 经济增长、产业结构对碳排放的影响分析——基于中国的省际面板数据[J]. 中国管理科学, 2012, 20(3): 161-166.
|
|
Wu Z X, Xie X J, Wang S P. The influence of economic development and industrial structure to carbon emission: Based on China’s provincial panel data[J].Chinese Journal of Management Science,2012,20(3):161-166.
|
7 |
何小钢,张耀辉.中国工业碳排放影响因素与CKC重组效应——基于STIRPAT模型的分行业动态面板数据实证研究[J].中国工业经济,2012(1):26-35.
|
|
He X G, Zhang Y H. Influence factors and environmental kuznets curve relink effect of Chinese industry’s carbon dioxide emission—empirical research:Based on STIRPAT model with industrial dynamic panel data[J].China Industrial Economics,2012(1):26-35.
|
8 |
胡初枝, 黄贤金, 钟太洋, 等. 中国碳排放特征及其动态演进分析[J]. 中国人口·资源与环境, 2008,18(3):38-42.
|
|
Hu C Z, Huang X J, Zhong T Y, et al. Character of carbon emission in China and its dynamic development analysis[J].China Population Resources and Environment,2008,18(3):38-42.
|
9 |
Chen X, Lin B Q. Assessment of eco-efficiency change considering energy and environment: A study of China’s non-ferrous metals industry[J]. Journal of Cleaner Production, 2020, 277(10): 123388.
|
10 |
Wang W W, Liu R, Zhang M, et al. Decomposing the decoupling of energy-related CO2 emissions and economic growth in Jiangsu province[J]. Energy for Sustainable Development, 2013, 17(1): 62-71.
|
11 |
Shaikh F, Ji Q, Shaikh P H, et al. Forecasting China’s natural gas demand based on optimised nonlinear grey models[J]. Energy, 2017, 140(12): 941-951.
|
12 |
York R, Rosa E, Dietz T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 2003, 46(3): 351-365.
|
13 |
Sun Z R, Liu Y D, Yu Y N. China’s carbon emission peak pre-2030: Exploring multi-scenario optimal low-carbon behaviors for China’s regions[J]. Journal of cleaner production, 2019, 231(9):963-979.
|
14 |
吴振信, 石佳. 基于STIRPAT和GM(1,1)模型的北京能源碳排放影响因素分析及趋势预测[J]. 中国管理科学, 2012, 20(S2): 803-809.
|
|
Wu Z X, Shi J. The influencing factor analysis and trend forecasting of Beijing energy carbon emission based on STIRPAT and GM(1,1) model’s[J].Chinese Journal of Management Science,2012,20(S2):803-809.
|
15 |
Du Q, Chen Q, Lu N. Forecast of Chinas carbon emissions based on modified IPAT model[J]. Acta Scientiae Circumstantiae, 2012, 32(9): 2294-2302.
|
16 |
Wu Y Z, Shen J H, Zhang X L, et al. The impact of urbanization on carbon emissions in developing countries: A Chinese study based on the U-Kaya method[J]. Journal of Cleaner Production, 2016, 135(11):589-603.
|
17 |
Lin B Q, Long H Y. Emissions reduction in Chinas chemical industry-based on LMDI[J]. Renewable and Sustainable Energy Reviews, 2016, 53(1):1348-1355.
|
18 |
Wang Z X, Ye D J. Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models[J]. Journal of Cleaner Production, 2017, 142(1): 600-612.
|
19 |
Xu G Y, Schwarz P, Yang H L. Determining China’s CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis[J]. Energy Policy, 2019, 128(5): 752-762.
|
20 |
Lu C, Li W, Gao S B. Driving determinants and prospective prediction simulations on carbon emissions peak for China’s heavy chemical industry[J]. Journal of Cleaner Production, 2020, 251(4): 119642.
|
21 |
Yuan J H, Xu Y, Hu Z, et al. Peak energy consumption and CO2 emissions in China[J]. Energy Policy, 2014, 68(5): 508-523.
|
22 |
Guan D B, Meng J, Reiner D M, et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems[J]. Nature Geoscience, 2018, 11:551-555.
|
23 |
Li W, Zhang S H, Lu C. The semi-centennial timescale dynamic assessment on carbon emission trajectory determinants for Hebei province within the new normal pattern shock[J]. Science of The Total Environment, 2019, 689(11): 494-504.
|
24 |
Gao C C, Liu Y H, Jin J, et al. Driving forces in energy-related carbon dioxide emissions in east and south coastal China: Commonality and variations[J]. Journal of Cleaner Production, 2016, 135(11): 240-250.
|
25 |
Chen X, Shuai C Y, Wu Y, et al. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors[J]. Science of The Total Environment, 2019, 709: 135768.
|
26 |
Li B, Han S W, Wang Y F, et al. Feasibility assessment of the carbon emissions peak in China’s construction industry: Factor decomposition and peak forecast[J]. Science of The Total Environment, 2020,706: 135716.
|
27 |
Zia T, Zahid U. Long short-term memory recurrent neural network architectures for Urdu acoustic modeling[J]. International Journal of Speech Technology, 2019, 22(1): 21-30.
|
28 |
Sundermeyer M, Ney H, Schlüter R. From feedforward to recurrent LSTM neural networks for language modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(3): 517-529.
|
29 |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
30 |
Bank World. China 2030: Building a modern, harmonious, and creative high-income society[J].China's Foreign Trade, 2012,91(4):36-37.
|
31 |
王一鸣.百年大变局、高质量发展与构建新发展格局[J].管理世界,2020,36(12):1-13.
|
|
Wang Y M. Changes unseen in a century,high-quality development,and the construction of a new development pattern[J]. Journal of Management World,2020,36(12):1-13.
|
32 |
中华人民共和国国务院.国务院关于印发国家人口发展规划(2016—2030年)的通知[J].中华人民共和国国务院公报,2017(6):24-35.
|
|
The State Council of the People’s Republic of China. Notice of the State Council on the issuance of on the Issuance of the National Population Development Plan (2016–2030)[J]. Gazette of the State Council of the People’s Republic of China, 2017(6): 24-35.
|
33 |
United Nations Department of Economic and Social Affairs. World population prospects 2024: Summary of results[M]. New York: United Nations Publication, 2024.
|
34 |
程余.中国省级绿色经济发展效率评估和碳减排路径研究[D].上海:上海大学博士论文,2021.
|
|
Cheng Y. Evaluation of provincial green economic development efficiency and carbon emission reduction pathways in China[D]. Shanghai:Shanghai University, 2021.
|
35 |
张洋.基于IPSO-LSTM模型的中国能源消费碳排放预测研究[D].北京:华北电力大学硕士论文,2021.
|
|
Zhang Y. Research on China's energy consumption carbon emission prediction based on IPSO-LSTM model[D]. Beijing: North China Electric Power University, 2021.
|
36 |
中国石油经济技术研究院. 2050年世界与中国能源展望(2020版)[R]. 研究报告, 中国石油经济技术研究院, 2020.
|
|
China Petroleum Economics and Technology Research Institute. World and China energy outlook 2050 (2020 Edition)[R]. Discussion Paper, China Petroleum Economics and Technology Research Institute, 2020.
|
37 |
全球能源互联网发展合作组织.中国 2030 年能源电 力发展规划研究及 2060 年展望[R].研究报告,全球能源互联网发展合作组织,2021.
|
|
Global Energy Interconnection Development and Cooperation Organization. Research on China's 2030 energy and power development plan and 2060 outlook[R]. Discussion Paper, Global Energy Interconnection Development and Cooperation Organization, 2021.
|
38 |
赵金元,马振,唐海亮. BP 神经网络和多元线性回归模型对碳排放预测的比较[J]. 科技和产业,2020,20(11):172-166.
|
|
Zhao J Y, Ma Z, Tang H L. Comparison of BP neural network and multiple linear regression models for carbon emissions prediction[J]. Science Technology and Industry,2020,20(11):172-176.
|
39 |
宋杰鲲. 基于支持向量回归机的中国碳排放预测模型[J]. 中国石油大学学报(自然科学版),2012,36(1):182-187.
|
|
Song J K. China's carbon emissions prediction model based on support vector regression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(1): 182-187.
|
40 |
Green F, Sitern N. China’s changing economy:Implications for its carbon dioxide emissions[J]. Climate Policy,2017,17(1-4):423-442.
|
41 |
林伯强,李江龙. 环境治理约束下的中国能源结构转变—— 基于煤炭和二氧化碳峰值的分析[J]. 中国社会科学,2015(9):84-107+205.
|
|
Lin B Q, Li J L. Transformation of China’s energy structure under environmental governance constraints:A peak value analysis of coal and carbon dioxide[J]. Social Sciences in China,2015(9):84-107+205.
|
42 |
Fang K, Tang Y Q, Zhang Q F,et al. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces[J]. Applied Energy,2019,255:1-12.
|
43 |
Gallagher K S, Zhang F, Orvis R,et al. Assessing the policy gaps for achieving China’s climate targets in the paris agreement[J]. Nature Communications,2019,10(1):1-10.
|
44 |
Mi Z F, Wei Y M, Wang B,et al. Socioeconomic impact assessment of China’s CO2 emissions peak prior to 2030[J]. Journal of Cleaner Production,2017,142: 2227-2236.
|
45 |
禹湘,陈楠,李曼琪. 中国低碳试点城市的碳排放特征与碳减排 路径研究[J]. 中国人口·资源与环境,2020,30(7):1-9.
|
|
Yu X, Chen N, Li M Q. Study on carbon emission characteristics and carbon reduction pathways of low-carbon pilot cities in China[J]. China Population, Resources and Environment, 2020, 30(7): 1-9.
|
46 |
张诗卉,李明煜,王灿,等.中国省级碳排放趋势及差异化达峰路径[J].中国人口·资源与环境,2021,31(9):45-54.
|
|
Zhang S H, Li M Y, Wang C, et al. Provincial carbon emission trends and differentiated peak pathways in China[J]. China Population, Resources and Environment, 2021, 31(9): 45-54.
|
47 |
中华人民共和国国务院.国务院关于印发 2030 年前 碳达峰行动方案的通知[J].中华人民共和国国务院公报,2021(31):48-58.
|
|
The State Council of the People’s Republic of China. Notice of the State Council on the issuance of action plan for carbon peaking before 2030[J].Gazette of the State Council of the People’s Republic of China,2021(31): 48-58.
|
48 |
崔连标,范英,朱磊,等.碳排放交易对实现我国“十二五”减排目标的成本节约效应研究[J].中国管理科学,2013,21(1):37-46.
|
|
Cui L B, Fan Y, Zhu L, et al. The cost-saving effect of carbon markets in China for achieving the reduction targets in the “12th Five-Year Plan”[J]. Chinese Journal of Management Science, 2013, 21(1): 37-46.
|
49 |
刘传明,孙喆,张瑾.中国碳排放权交易试点的碳减排政策效应研究[J].中国人口·资源与环境,2019,29(11):49-58.
|
|
Liu C Y, Sun Z, Zhang Z. Research on the effect of carbon emission reduction policy in China’s carbon emissions trading pilot[J]. China Population, Resources and Environment,2019,29(11):49-58.
|