主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (3): 139-150.doi: 10.16381/j.cnki.issn1003-207x.2022.0173cstr: 32146.14/j.cnki.issn1003-207x.2022.0173

• • 上一篇    下一篇

带符号在线社交网络中净正面交互信息量最大化问题研究

戴佳伶1, 朱建明1(), 王国庆2, 黄钧2   

  1. 1.中国科学院大学应急管理科学与工程学院,北京 100190
    2.中国科学院大学工程科学学院,北京 100190
  • 收稿日期:2022-01-24 修回日期:2022-09-01 出版日期:2025-03-25 发布日期:2025-04-07
  • 通讯作者: 朱建明 E-mail:jmzhu@ucas.ac.cn
  • 基金资助:
    国家社会科学基金重大项目(24&ZD163)

Net Positive Information Diffusion Activity Maximizing in Signed Online Social Networks

Jialing Dai1, Jianming Zhu1(), Guoqing Wang2, Jun Huang2   

  1. 1.School of Emergency Management Science and Engineering,University of Chinese Academy of Sciences,Beijing 100190,China
    2.School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100190,China
  • Received:2022-01-24 Revised:2022-09-01 Online:2025-03-25 Published:2025-04-07
  • Contact: Jianming Zhu E-mail:jmzhu@ucas.ac.cn

摘要:

在线社交网络已经融入了人们的生活,网络已经成为了传播信息的理想平台,然而商家的推荐信息的传播效果却不佳。因此,研究信息发布策略,让正面信息得到更好的宣传具有重大意义。本文通过最大化用户之间净正面交互信息量,研究带符号在线社交网络中节点选择策略。给定带符号在线社交网络G=(V,E,X,P,C),任意一条边eE上有其传播符号xX、传播概率pP,和信息量交互强度cC。在线社交网络中净正面信息量最大化问题就是从节点集V中选取包含k个节点的种子集S与其赋值函数F:S{+,-},使得传播结束时网络中的正面信息量减去负面信息量的差值最大。首先,证明了该问题是NP-困难的,其目标函数的计算是#P-困难的。其次,证明了由于信息的组合效应,导致该问题既不是次模的也不是超模的。然后,根据传播特性提出了传播路径的构造方法和路径收益的近似计算方法,从而将问题构造为单调次模的正面信息量函数的求解。再次,设计了一种高效的最大覆盖贪婪算法来解决带符号网络中净正面信息量最大化问题。最后,在真实网络中进行实验,验证了所提出的算法优于其他方法,发现了传播人数与传播效果并不对等这一现象。

关键词: 带符号在线社交网络, 正面信息交互量, 影响力最大化

Abstract:

Online social networks have been integrated into people’s lives, and the Internet has become an ideal platform for disseminating information. Internet Word of Mouth Marketing (IWOM) is becoming increasingly attractive to companies. However, the dissemination of some promotional information can generate a large number of negative comments, damaging reputation and long-term profits. Therefore, it is of great significance to study information dissemination strategies so that beneficial information can be better promoted. The node selection strategy is investigated to maximize the amount of net positive information diffusion among individuals in signed online social networks. Given a signed online social network G=(V,E,X,P,C), each edge eE has an edge symbol xX and a propagation probability pP. C is the intensity of information interaction between individuals. The information propagation model is defined as the Signed Independent Cascade (SIC) model in signed networks. The problem of net positive information maximizing is to select a seed set containing k nodes from the node-set V and its assignment function F:S{+,-} so that the amount of positive information minus the amount of negative information is maximum at the end of the spread. The problem is shown to be NP-hard and its objective function computation is #P-hard. Second, it is demonstrated that the problem is neither submodular nor supermodular due to the combined effect of information. Then, according to the propagation characteristics, the propagation path and its approximate calculation method are proposed. The problem is further constructed to solve a positive monotone submodular function. Third, an efficient maximum coverage greedy algorithm is designed to maximize the amount of net positive information. Finally, experiments conducted on real networks to verify that the proposed algorithm is superior to other methods and show that information diffusion is not equal to the dissemination effect.

Key words: signed online social networks, positive information, influence maximization

中图分类号: