中国管理科学 ›› 2025, Vol. 33 ›› Issue (2): 105-117.doi: 10.16381/j.cnki.issn1003-207x.2023.1927cstr: 32146.14.j.cnki.issn1003-207x.2023.1927
收稿日期:
2023-11-16
修回日期:
2024-04-25
出版日期:
2025-02-25
发布日期:
2025-03-06
通讯作者:
李新
E-mail:drxinli@ustb.edu.cn
基金资助:
Xin Li1(), Xu Zhang1, Lean Yu2, Shouyang Wang3
Received:
2023-11-16
Revised:
2024-04-25
Online:
2025-02-25
Published:
2025-03-06
Contact:
Xin Li
E-mail:drxinli@ustb.edu.cn
摘要:
当前的旅游需求预测研究大多以年度、月度和日度频率的数据为主,而在短时高频的客流预测研究方面仍有待深化。本研究提出了一个基于改进Transformer模型的景区客流量预测框架,通过采集北京颐和园、故宫、天坛等7个5A级旅游景区2023年2月—2023年8月的每15分钟数据,采用TPE优化算法对Informer、Autoformer和Fedformer三种基于Transformer的深度学习模型进行改进,对北京7个景区的高频客流量开展一步和多步预测,并与其他深度学习模型(DeepAR、TCN、LSTM)、机器学习模型(GBRT)以及时间序列模型(ARIMA)在多种预测情境中的精度进行评价。结果表明,三种基于改进的Transformer模型在预测表现上展现出显著优势,尤其是Informer模型。本文提出的研究框架丰富了短时客流数据的分析方法,是对现有旅游需求预测研究的重要拓展,能够提高景区高频客流预测精度,在提升景区管理效率和支持决策制定等方面具有重要的现实意义。
中图分类号:
李新, 张旭, 余乐安, 汪寿阳. 基于改进Transformer模型的景区短时客流预测研究[J]. 中国管理科学, 2025, 33(2): 105-117.
Xin Li, Xu Zhang, Lean Yu, Shouyang Wang. Enhancing Short-term Tourist Flow Forecasting and Evaluation Using an Improved Transformer Framework[J]. Chinese Journal of Management Science, 2025, 33(2): 105-117.
表3
所有模型的一步和多步预测误差评价"
景点 | 步长 | Informer | Autoformer | Fedformer | GBRT | DeepAR | TCN | LSTM | ARIMA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
颐和园 | 1 | 0.098 | 0.221 | 0.1 | 0.222 | 0.102 | 0.222 | 0.172 | 0.315 | 0.112 | 0.238 | 0.254 | 0.399 | 0.111 | 0.234 | 0.754 | 0.824 |
4 | 0.155 | 0.288 | 0.272 | 0.37 | 0.207 | 0.327 | 0.274 | 0.397 | 0.283 | 0.314 | 0.646 | 0.666 | 0.355 | 0.361 | 0.841 | 0.917 | |
8 | 0.277 | 0.354 | 0.426 | 0.497 | 0.377 | 0.454 | 0.435 | 0.501 | 0.309 | 0.424 | 1.264 | 0.931 | 0.536 | 0.449 | 0.751 | 0.866 | |
48 | 0.905 | 0.719 | 1.496 | 0.938 | 1.047 | 0.756 | 1.199 | 0.826 | 0.875 | 0.637 | 1.064 | 0.761 | 0.979 | 0.823 | 1.554 | 0.967 | |
天坛 | 1 | 0.061 | 0.148 | 0.053 | 0.137 | 0.049 | 0.132 | 0.098 | 0.174 | 0.087 | 0.188 | 0.199 | 0.335 | 0.056 | 0.136 | 0.247 | 0.497 |
4 | 0.149 | 0.245 | 0.207 | 0.301 | 0.15 | 0.246 | 0.261 | 0.302 | 0.218 | 0.309 | 0.504 | 0.529 | 0.164 | 0.277 | 0.231 | 0.481 | |
8 | 0.380 | 0.395 | 0.453 | 0.455 | 0.324 | 0.382 | 0.537 | 0.476 | 0.501 | 0.472 | 1.001 | 0.741 | 0.523 | 0.477 | 0.215 | 0.460 | |
48 | 1.227 | 0.806 | 1.478 | 0.856 | 1.263 | 0.776 | 2.37 | 1.071 | 1.342 | 0.835 | 1.349 | 0.791 | 1.281 | 0.788 | 0.343 | 0.578 | |
故宫 | 1 | 0.031 | 0.115 | 0.032 | 0.121 | 0.026 | 0.102 | 0.038 | 0.12 | 0.035 | 0.116 | 0.087 | 0.216 | 0.039 | 0.119 | 0.752 | 0.867 |
4 | 0.073 | 0.181 | 0.101 | 0.199 | 0.066 | 0.17 | 0.11 | 0.206 | 0.104 | 0.175 | 0.28 | 0.408 | 0.127 | 0.206 | 0.685 | 0.827 | |
8 | 0.122 | 0.230 | 0.414 | 0.442 | 0.138 | 0.26 | 0.226 | 0.305 | 0.145 | 0.203 | 0.595 | 0.603 | 0.228 | 0.249 | 0.593 | 0.768 | |
48 | 0.316 | 0.389 | 0.833 | 0.726 | 0.317 | 0.402 | 0.688 | 0.596 | 0.335 | 0.306 | 0.692 | 0.624 | 0.640 | 0.754 | 0.321 | 0.468 | |
奥林匹克公园 | 1 | 0.097 | 0.157 | 0.102 | 0.164 | 0.101 | 0.16 | 0.118 | 0.18 | 0.101 | 0.158 | 0.129 | 0.211 | 0.120 | 0.161 | 0.131 | 0.277 |
4 | 0.178 | 0.259 | 0.25 | 0.297 | 0.213 | 0.248 | 0.228 | 0.27 | 0.183 | 0.257 | 0.344 | 0.369 | 0.213 | 0.284 | 0.249 | 0.275 | |
8 | 0.211 | 0.313 | 0.398 | 0.402 | 0.329 | 0.341 | 0.341 | 0.364 | 0.305 | 0.368 | 0.55 | 0.528 | 0.288 | 0.287 | 0.372 | 0.386 | |
48 | 0.427 | 0.463 | 0.686 | 0.586 | 0.555 | 0.506 | 0.67 | 0.597 | 0.585 | 0.523 | 0.627 | 0.535 | 0.599 | 0.516 | 0.597 | 0.664 | |
十三陵 | 1 | 0.018 | 0.095 | 0.019 | 0.095 | 0.02 | 0.098 | 0.027 | 0.111 | 0.022 | 0.098 | 0.033 | 0.139 | 0.028 | 0.112 | 0.022 | 0.111 |
4 | 0.034 | 0.129 | 0.051 | 0.164 | 0.041 | 0.145 | 0.058 | 0.168 | 0.05 | 0.155 | 0.095 | 0.249 | 0.038 | 0.191 | 0.056 | 0.172 | |
8 | 0.056 | 0.169 | 0.087 | 0.227 | 0.073 | 0.199 | 0.106 | 0.234 | 0.084 | 0.205 | 0.184 | 0.352 | 0.061 | 0.217 | 0.103 | 0.221 | |
48 | 0.121 | 0.251 | 0.265 | 0.392 | 0.153 | 0.287 | 0.213 | 0.344 | 0.169 | 0.358 | 0.197 | 0.403 | 0.158 | 0.348 | 0.281 | 0.384 | |
恭王府 | 1 | 0.081 | 0.183 | 0.084 | 0.185 | 0.084 | 0.17 | 0.097 | 0.189 | 0.082 | 0.184 | 0.183 | 0.308 | 0.165 | 0.245 | 0.101 | 0.123 |
4 | 0.160 | 0.258 | 0.223 | 0.319 | 0.19 | 0.289 | 0.221 | 0.298 | 0.144 | 0.257 | 0.518 | 0.544 | 0.211 | 0.295 | 0.331 | 0.266 | |
8 | 0.219 | 0.314 | 0.416 | 0.454 | 0.317 | 0.389 | 0.402 | 0.413 | 0.323 | 0.391 | 1.006 | 0.785 | 0.325 | 0.345 | 0.368 | 0.315 | |
48 | 0.464 | 0.509 | 0.918 | 0.729 | 0.515 | 0.534 | 0.884 | 0.677 | 0.557 | 0.537 | 0.831 | 0.682 | 0.509 | 0.522 | 0.821 | 0.717 | |
圆明园 | 1 | 0.007 | 0.053 | 0.009 | 0.065 | 0.008 | 0.058 | 0.010 | 0.068 | 0.009 | 0.064 | 0.011 | 0.077 | 0.017 | 0.095 | 0.011 | 0.108 |
4 | 0.012 | 0.078 | 0.018 | 0.097 | 0.016 | 0.089 | 0.018 | 0.095 | 0.017 | 0.095 | 0.027 | 0.13 | 0.016 | 0.083 | 0.018 | 0.116 | |
8 | 0.017 | 0.098 | 0.026 | 0.122 | 0.021 | 0.107 | 0.026 | 0.121 | 0.026 | 0.123 | 0.043 | 0.166 | 0.022 | 0.126 | 0.027 | 0.147 | |
48 | 0.042 | 0.158 | 0.055 | 0.18 | 0.042 | 0.156 | 0.052 | 0.175 | 0.05 | 0.172 | 0.049 | 0.164 | 0.043 | 0.164 | 0.053 | 0.177 |
1 | 余乐安.基于人工智能的预测与决策优化理论和方法研究[J]. 管理科学, 2022, 35(1): 60-66. |
Yu L A. Research on the theory and method of prediction and decision optimization based on artificial intelligence[J]. Journal of Management Science,2022,35(1):60-66. | |
2 | 倪冬梅,赵秋红,李海滨.需求预测综合模型及其与库存决策的集成研究[J].管理科学学报, 2013, 16(9): 44-52+74. |
Ni D M, Zhao Q H, Li H B. Research on the integrated model of demand forecasting and its integration with inventory decision-making[J]. Journal of Management Sciences in China,2013,16(9):44-52+74. | |
3 | 陈荣, 梁昌勇, 陆文星, 等. 面向旅游突发事件的客流量混合预测方法研究[J]. 中国管理科学, 2017, 25(5): 167-174. |
Chen R, Liang C Y, Lu W X, et al. The research of tourist flow hybrid forecasting model for tourism emergency events[J]. Chinese Journal of Management Science, 2017, 25(5): 167-174. | |
4 | 尹隽,彭艳红,陆怡,等.基于深度神经网络的企业信息系统用户异常行为预测[J]. 管理科学, 2020, 33(1): 30-45. |
Yin J, Peng Y H, Lu Y, et al. Prediction of abnormal behavior of enterprise information system users based on deep neural network[J]. Journal of Management Science, 2020,33(1):30-45. | |
5 | 林宇,余元圆,张希,等.基于误差修正与深度强化学习的原油期货价格预测研究[J].系统工程理论与实践,2023,43(1):206-221. |
Lin Y, Yu Y Y, Zhang X, et al. Research on crude oil futures price prediction based on error correction and deep reinforcement learning[J]. Systems Engineering - Theory & Practice,2023,43(1):206-221. | |
6 | 李洁,彭其渊,文超.基于LSTM深度神经网络的高速铁路短期客流预测研究[J].系统工程理论与实践, 2021, 41(10): 2669-2682. |
Li J, Peng Q Y, Wen C. Research on short-term passenger flow prediction of high-speed railway based on LSTM deep neural network[J]. Systems Engineering - Theory & Practice,2021,41(10):2669-2682. | |
7 | 姚智胜, 邵春福, 熊志华. 基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J]. 中国管理科学, 2007, 15(1):64-68. |
Yao Z S, Shao C F, Xiong Z H. Research on short-term traffic flow combined forecasting based on wavelet package and least square support vector machines[J]. Chinese Journal of Management Science, 2007, 15(1): 64-68. | |
8 | 潘和平, 张承钊. FEPA-金融时间序列自适应组合预测模型[J]. 中国管理科学, 2018, 26(6): 26-38. |
Pan H P, Zhang C Z. FEPA: An adaptive integrated prediction model of financial time series[J]. Chinese Journal of Management Science, 2018, 26(6):26-38. | |
9 | 欧阳红兵, 黄亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35. |
OuYang H B, Huang K, Yan H J. Prediction of financial time series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4): 27-35. | |
10 | 陈海强, 陈丽琼, 李迎星,等.高频数据是否能改善股票价格预测?——基于函数型数据的实证研究[J].计量经济学报, 2021, 1(2): 426-436. |
Chen H Q, Chen L Q, Li Y X, et al. Can high-frequency data improve stock price prediction?An empirical study based on functional data[J].China Journal of Econometrics Journal,2021,1(2):426-436. | |
11 | 费兆奇, 刘康. 中国宏观经济波动的高频监测研究——基于混频模型对日度经济先行指数的构建和分析[J]. 管理世界, 2019, 35(6): 27-38. |
Fei Z Q, Liu K. Research on high-frequency monitoring of China’s macroeconomic fluctuations: Construction and analysis of daily economic leading index based on mixed frequency model[J]. Journal of Management World, 2019, 35(6): 27-38. | |
12 | Zhen H, Niu D, Wang K, et al. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information[J]. Energy, 2021, 231: 120908. |
13 | Zheng W, Huang L, Lin Z. Multi-attraction, hourly tourism demand forecasting[J]. Annals of Tourism Research, 2021, 90: 103271. |
14 | 武静, 赵二龙, 孙少龙, 等. 多源异构数据驱动的后疫情时期旅游需求预测方法研究[J]. 计量经济学报, 2023, 3(2): 350-366. |
Wu J, Zhao E L, Sun S L, et al. Research on tourism demand forecasting method in the post-epidemic period driven by multi-source heterogeneous data[J]. China Journal of Econometrics, 2023, 3(2): 350-366. | |
15 | Law R, Li G, Fong D K C, et al. Tourism demand forecasting: A deep learning approach [J]. Annals of Tourism Research, 2019, 75: 410-423. |
16 | Silva E S, Hassani H, Heravi S, et al. Forecasting tourism demand with denoised neural networks[J]. Annals of Tourism Research, 2019, 74: 134-154. |
17 | 李文, 邓升, 段妍, 等. 时间序列预测与深度学习: 文献综述与应用实例[J]. 计算机应用与软件, 2020, 37(10): 64-70. |
Li W, Deng S, Duan Y, et al. Time series forecasting and deep learning: Literature review and application examples [J]. Computer Applications and Software, 2020, 37(10): 64-70. | |
18 | 徐小峰,余乐安,林姿汝,等. 基于特征融合的生鲜商品短期销量组合预测[J]. 管理科学学报, 2022, 25(12): 102-123. |
Xu X F, Yu L A, Lin Z R, et al. Short-term sales portfolio prediction of fresh commodities based on feature fusion[J]. Journal of Management Sciences in China,2022,25(12):102-123. | |
19 | 方雪清, 吴春胤, 俞守华, 等. 基于EEMD-LSTM的农产品价格短期预测模型研究[J]. 中国管理科学, 2021, 29(11): 68-77. |
Fang X Q, Wu C Y, Yu S H, et al. Research on short-term forecast model of agricultural product price based on EEMD-LSTM[J]. Chinese Journal of Management Science, 2021, 29(11): 68-77. | |
20 | Hewage P, Behera A, Trovati M, et al. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24: 16453-16482. |
21 | Sun S, Wei Y, Tsui K L, et al. Forecasting tourist arrivals with machine learning and internet search index[J]. Tourism Management, 2019, 70: 1-10. |
22 | Salinas D, Flunkert V, Gasthaus J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks[J]. International Journal of Forecasting, 2020, 36(3): 1181-1191. |
23 | Han L, Ye H J, Zhan D C. The capacity and robustness trade-off: Revisiting the channel independent strategy for multivariate time series forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(11): 7129-7142. |
24 | Cirstea R G, Micu D V, Muresan G M, et al. Correlated time series forecasting using multi-task deep neural networks[C]//Proceedings of the 27th ACM international conference on information and knowledge management, Torino, Italy, Ocober 22-26, Association for Computing Machinery, 2018: 1527-1530. |
25 | Rangapuram S S, Seeger M, Gasthaus J, et al. Deep state space models for time series forecasting[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, December 3-8 , Curran Associates Inc,2018: 7796-7805. |
26 | Yan R, Liao J, Yang J, et al. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering[J]. Expert Systems with Applications, 2021, 169: 114513. |
27 | Li C, Zheng W, Ge P. Tourism demand forecasting with spatiotemporal features[J]. Annals of Tourism Research, 2022, 94: 103384. |
28 | Mao W, Zhu H, Wu H, et al. Forecasting and trading credit default swap indices using a deep learning model integrating Merton and LSTMs[J]. Expert Systems with Applications, 2023, 213: 119012. |
29 | 高明, 刘超, 唐加福, 等. 基于注意力神经网络的燃料电池寿命衰减预测[J]. 中国管理科学, 2023, 31(3): 155-166. |
Gao M, Liu C, Tang J F, et al. Lifetime decay prediction of fuel cell based on attention neural network[J]. Chinese Journal of Management Science, 2023, 31(3): 155-166. | |
30 | 吴洁, 桂亮, 刘鹏, 等. 多维特征视角下基于图卷积网络的专利技术领域自动识别研究[J]. 中国管理科学, 2022, 30(12): 185-197. |
Wu J, Gui L, Liu P, et al. Patent classification based on multi-dimensional feature and graph convolutional networks[J]. Chinese Journal of Management Science, 2022, 30(12): 185-197. | |
31 | Franceschi J Y, Dieuleveut A, Jaggi M. Unsupervised scalable representation learning for multivariate time series[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver BC, Canada, December 8-14 , Curran Associates Inc, 2019: 4650-4661. |
32 | Devlin J, Chang M W, Lee K,et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, June 2-7 ,Association for Computational Linguistics, 2019: 4171-4186. |
33 | Dong L, Xu S, Xu B. Speech-Transformer: A no-recurrence sequence-to-sequence model for speech recognition[C]// Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, April 15-20, IEEE, 2018: 5884-5888. |
34 | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]// Proceedings of the Ninth International Conference on Learning Representations, Virtual Conference, May 3-7 , OpenReview, 2021. |
35 | Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtual Conference, February 2–9 , Association for the Advancement of Artificial Intelligence, 2021: 11106-11115. |
36 | Wu H, Xu J, Wang J, et al. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in Neural Information Processing Systems, 2021, 34: 22419-22430. |
37 | Zhou T, Ma Z, Wen Q, et al. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting[C]//Proceedings of the 39th International Conference on Machine Learning, Baltimore, Marylan, July 17-23 , Proceedings of Machine Learning Research, 2022: 27268-27286. |
38 | Bergstra J, Bardenet R, Bengio Y, et al. Algorithms for hyper-parameter optimization[C]//Proceedings of the 24th Advances in Neural Information Processing Systems, Granada, Spain, December 12-17 , Curran Associates, Inc., 2011: 2546-2554. |
39 | 杨杰,冯芸,黄倩.基于MHPSO-NHMM-FIEGARCH-GED模型的Brent原油价格波动研究[J]. 中国管理科学, 2023, 31(6): 265-275. |
Yang J, Feng Y, Huang Q. Research on brent crude oil price fluctuation based on MHPSO-NHMM-FIEGARCH-GED model[J]. Chinese Journal of Management Science, 2023, 31(6): 265-275. | |
40 | 张歆悦,靳鹏,胡笑旋,等. 时间依赖型多配送中心带时间窗的开放式车辆路径问题研究[J]. 中国管理科学, 2024, 32(1): 146-157. |
Zhang X Y, Jin P, Hu X X, et al. Research on the time-dependent multi-depot open vehicle routing problem with time windows[J]. Chinese Journal of Management Science, 2024, 32(1): 146-157. | |
41 | 张婉莹, 何耀耀, 杨善林. 基于 TVFEMD-SE 和 YJQRG 的短期风电功率多步概率密度预测[J]. 系统工程理论与实践, 2022,42(8): 2225-2242. |
Zhang W Y, He Y Y, Yang S L. Multi-step probability density prediction of short-term wind power based on TVFEMD-SE and YJQRG[J]. Systems Engineering - Theory & Practice, 2022,42(8): 2225-2242. | |
42 | Liu X, Liu A, Chen J L, et al. Impact of decomposition on time series bagging forecasting performance[J]. Tourism Management, 2023, 97: 104725. |
[1] | 杜江泽,陈希卓,余乐安. IT背景高管能促进金融科技创新吗?[J]. 中国管理科学, 2023, 31(12): 69-78. |
[2] | 欧阳红兵, 黄亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35. |
[3] | 李玲, 丁帅, 李霄剑, 杨善林. 上消化道疾病人工智能辅助决策方法研究[J]. 中国管理科学, 2019, 27(11): 211-216. |
[4] | 孔繁辉, 李健. 供应中断风险下OEM供应链弹性运作与提升策略[J]. 中国管理科学, 2018, 26(2): 152-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|