中国管理科学 ›› 2025, Vol. 33 ›› Issue (1): 34-51.doi: 10.16381/j.cnki.issn1003-207x.2023.1737cstr: 32146.14.j.cnki.issn1003-207x.2023.1737
收稿日期:
2023-10-19
修回日期:
2024-03-16
出版日期:
2025-01-25
发布日期:
2025-02-14
通讯作者:
霍红
E-mail:huohong@nsfc.gov.cn
基金资助:
Peng Wu1, Qi Wang1, Hong Huo2(), Zuoyi Liu2
Received:
2023-10-19
Revised:
2024-03-16
Online:
2025-01-25
Published:
2025-02-14
Contact:
Hong Huo
E-mail:huohong@nsfc.gov.cn
摘要:
在城市风险增加和政府政策推动的双重背景下,韧性城市的建设进程加快,随之而来的运营管理问题已逐渐成为一个新兴的研究热点。韧性城市运营管理旨在运用复杂运营管理的思想、方法和技术,提升城市风险应对能力,优化城市资源配置,为增强城市安全韧性和推动城市治理体系现代化提供决策支持。本文基于2013-2023年国内外韧性城市运营管理相关文献,结合韧性城市运营管理内涵,运用定量分析与定性分析相结合的方式,归纳出韧性城市运营管理的交通管理、物流管理、水资源与能源管理、环境管理、安全管理和智慧发展六大主要研究领域,总结了各领域的研究进展,提炼出韧性城市运营管理研究的关注热点,并结合最新的研究成果分析了相关领域研究的必要性和紧迫性。
中图分类号:
吴鹏, 王琦, 霍红, 刘作仪. 韧性城市运营管理:新兴研究热点及其进展[J]. 中国管理科学, 2025, 33(1): 34-51.
Peng Wu, Qi Wang, Hong Huo, Zuoyi Liu. Progress and Prospects in an Emerging Hot Topic: Resilient City Operations Management[J]. Chinese Journal of Management Science, 2025, 33(1): 34-51.
表1
2013-2023年被引频次排名前10的文献"
文献 | 研究主题 | 发表期刊 | 年份 | 被引频次 |
---|---|---|---|---|
城市水管理 | Advances in Water Resources | 2013 | 584 | |
[ | 绿色基础设施 | Journal of Environmental Management | 2014 | 522 |
疫情下城市管理 | Science of the Total Environment | 2020 | 491 | |
[ | 气候和环境变化 | Cities | 2013 | 400 |
[ | 城市洪水 | Urban Water Journal | 2015 | 386 |
[ | 系统韧性 | Resources,Conservation and Recycling | 2021 | 376 |
[ | 数字孪生建筑 | Automation in Construction | 2020 | 353 |
[ | 可持续城市转型 | Journal of Cleaner Production | 2013 | 284 |
[ | 城市能源韧性 | Renewable & Sustainable Energy Reviews | 2016 | 260 |
[ | 城市交通 | Transportation Research Interdisciplinary Perspectives | 2020 | 246 |
表5
韧性城市水资源与能源管理研究现状"
文献 | 城市/地区 | 事件 | 模型 | 求解方法 |
---|---|---|---|---|
[ | 泰布里兹 | 干旱 | 基于GIS的多准则决策模型 | - |
[ | 设拉子 | 干旱 | 基于条件风险耦合优化模型 | - |
[ | - | 水资源管理 | 动态水资源规划模型 | 敏感性驱动 |
[ | 深圳 | 暴雨 | 动态时空分布模型 | 机器学习 |
[ | 中国北方城市 | 水污染 | 多目标鲁棒优化模型 | NSGA-II |
[ | 天津 | 城市洪涝 | 多目标优化模型 | 模拟退火 |
[ | 北京通州区 | 城市洪涝 | 多目标优化模型 | NSGA-II |
[ | - | 电力短缺 | 电网分配模型 | 通用学习进化 |
[ | 中国华南城市 | 暴雨 | 多目标预测模型 | 机器学习 |
[ | - | 紧急事件 | 两阶段最优负荷调度模型 | 仿真 |
[ | - | 不稳定 | 频率稳定约束机组启停模型 | Benders分解 |
[ | - | 突发事件 | 能源和旋转备用调度模型 | 仿真 |
[ | - | 极端事件 | 静态/动态储能系统调度模型 | 仿真 |
[ | 昆明 | 天然气需求 | 燃气负荷预测模型 | 果蝇优化 |
[ | 某地区 | 天然气需求 | 燃气负荷预测模型 | 混合启发式 |
[ | 成都 | 天然气需求 | 燃气负荷预测模型 | 鲸鱼优化 |
表6
韧性城市环境管理研究现状"
文献 | 城市/地区 | 事件 | 模型 | 求解方法 |
---|---|---|---|---|
[ | 德黑兰 | 废品收集 | 多目标鲁棒优化模型 | 商业求解器 |
[ | 水俣市 | 工业污染 | 多级最大覆盖选址模型 | 商业求解器 |
[ | 马赞达兰 | 废品收集 | 鲁棒优化模型 | 商业求解器 |
[ | 埃德蒙顿 | 废品收集 | 动态选址路径优化模型 | 混合启发式 |
[ | 北欧城市 | 废品转化能源 | 两阶段分布鲁棒优化模型 | 商业求解器 |
[ | 捷克 | 废品转化能源 | 废品能源转化优化框架 | 层次时序记忆 |
[ | - | 生活垃圾气化 | 优化集成模型 | 粒子群优化 |
[ | 武汉 | 可持续发展 | 多目标评价系统 | 二代遗传算法 |
[ | 波哥大 | 暴风雨 | 绿色基础设施选址规划 | 商业求解器 |
[ | 天津 | 城市绿化 | 绿色空间选址优化模型 | 遗传算法 |
[ | 徐州 | 城市绿化 | 城市绿色空间优化模型 | 启发式 |
[ | 北京 | 城市热岛效应 | 多目标绿地分配模型 | 遗传算法 |
[ | 香港九龙 | 城市绿化 | 城市降温模型 | 遗传算法 |
[ | 中国三大都市 | 空气污染 | 空气污染预测 | 多目标优化算法 |
[ | 太原和上海 | 空气污染 | 高精度的臭氧浓度预测 | 集成学习范式 |
[ | 京津冀地区 | 空气质量监测 | 空气质量预测模型 | 深度学习 |
[ | 青岛 | 噪音污染 | 交通噪声双重决策优化 | 遗传算法 |
[ | 天津 | 噪音污染 | 考虑噪声的路网优化模型 | 仿真 |
[ | 广州 | 噪音污染 | 交通噪声动态模型 | 仿真 |
表7
韧性城市安全管理研究现状"
文献 | 城市/地区 | 事件 | 模型 | 求解方法 |
---|---|---|---|---|
[ | 阿卡普尔科 | 洪水 | 双目标优化模型 | 商业求解器 |
[ | 德黑兰 | 地震 | 多期选址分配库存模型 | 遗传算法 |
[ | 海地 | 地震 | 两阶段随机规划模型 | 分支定界 |
[ | 日本东北地区 | 地震 | - | 机器学习 |
[ | 台湾 | 地震 | 随机行人细胞传输模型 | 仿真 |
[ | 墨尔本 | 火灾 | 空间集成火灾风险模型 | 马尔科夫链 |
[ | 墨西哥 | 火灾 | 火灾态势预测网络模型 | 深度学习 |
[ | 伊斯坦布尔 | 火灾 | 消防站选址 | 多准则决策分析 |
[ | 康塞普西翁 | 火灾 | 设施选址和设备定位模型 | 启发式算法 |
[ | 康塞普西翁 | 火灾 | 鲁棒优化模型 | 仿真 |
[ | 武汉 | 火灾 | 多目标优化模型 | 仿真 |
[ | 奥地利州 | 紧急医疗 | 医疗服务场所规划模型 | 商业求解器 |
[ | 伊斯坦布尔 | 地震 | 两阶段随机规划模型 | 商业求解器 |
[ | 武汉 | 疫情 | 医疗设施选址和分配动态模型 | 商业求解器 |
[ | 武汉 | 疫情 | 医疗物资的调度模型 | 动态规划算法 |
[ | 乌特勒支 | 资源受限 | 离线救护车调度模型 | 商业求解器 |
[ | - | 突发事件 | 无人机路径规划模型 | 混合启发式 |
1 | Fletcher T D, Andrieu H, Hamel P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art[J]. Advances in Water Resources, 2013, 51: 261-279. |
2 | Demuzere M, Orru K, Heidrich O, et al. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure[J]. Journal of Environmental Management, 2014,146: 107-115. |
3 | Sharifi A, Khavarian-Garmsir A R. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management[J]. Science of the Total Environment, 2020, 749: 142391. |
4 | Jabareen Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk[J]. Cities, 2013, 31: 220-229. |
5 | Hammond M J, Chen A S, Djordjevic S, et al. Urban flood impact assessment: A state-of-the-art review[J]. Urban Water Journal, 2015(12): 14-29. |
6 | Ibn-Mohammed T, Mustapha K B, Godsell J, et al. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies[J]. Resources, Conservation and Recycling, 2021, 164: 105169. |
7 | Boje C, Guerriero A, Kubicki S, et al. Towards a semantic Construction Digital Twin: Directions for future research[J]. Automation in Construction, 2020, 114: 103179. |
8 | McCormick K, Anderberg S, Coenen L, et al. Advancing sustainable urban transformation[J]. Journal of Cleaner Production, 2013, 50: 1-11. |
9 | Sharifi A, Yamagata Y. Principles and criteria for assessing urban energy resilience: A literature review[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 1654-1677. |
10 | Teixeira J F, Lopes M. The link between bike sharing and subway use during the COVID-19 pandemic: The case-study of New York's citi bike[J]. Transportation Research Interdisciplinary Perspectives, 2020, 6:100166. |
11 | 张朋,谢云东,吴强,等.我国管理科学与工程学科研究热点及演化趋势[J]. 管理科学学报, 2022, 25(5): 1-12. |
Zhang P, Xie Y D, Wu Q, et al. Hot topics and thematic evolutionary trends of researches on management science and engineering in China[J]. Journal of Management Sciences in China, 2022, 25(5): 1-12. | |
12 | Smit B, Wandel J. Adaptation, adaptive capacity and vulnerability[J]. Global Environmental Change, 2006, 16(3): 282-292. |
13 | Sellberg M M, Ryan P, Borgstrom S T, et al. From resilience thinking to resilience planning: Lessons from practice[J]. Journal of Environmental Management, 2018, 217: 906-918. |
14 | Ahern J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world[J]. Landscape and Urban Planning, 2011, 100(4): 341-343. |
15 | Heeks R, Ospina A V. Conceptualising the link between information systems and resilience: A developing country field study[J]. Information Systems Journal, 2019, 29(1): 70-96. |
16 | Godschalk D R. Urban hazard mitigation: Creating resilient cities[J]. Natural Hazards Review, 2003, 4(3): 136-143. |
17 | Desouza K C, Flanery T H. Designing, planning, and managing resilient cities: A conceptual framework[J]. Cities, 2013, 35: 89-99. |
18 | Qi W, Shen Z J M. A smart-city scope of operations management[J]. Production and Operations Management, 2019, 28(2): 393-406. |
19 | 沈凌,陆建,王成晨.面向大型活动的交通应急预案快速生成与动态优化方法[J]. 交通信息与安全,2021, 39(3): 33-40. |
Shen L, Lu J, Wang C C. Rapid generation and dynamic optimization of traffic emergency plans for large-scale events[J]. Journal of Transport Information and Safety, 2021, 39(3): 33-40. | |
20 | Wang Q Y, Nie X F. A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion[J]. Socio-Economic Planning Sciences,2022,79: 101119. |
21 | Alam M J, Habib M A, Husk D. Evacuation planning for persons with mobility needs: A combined optimization and traffic microsimulation modelling approach[J]. International Journal of Disaster Risk Reduction, 2022, 80: 103164. |
22 | Bagloee S A, Johansson K H, Asadi M. A hybrid machine-learning and optimization method for contraflow design in post-disaster cases and traffic management scenarios[J]. Expert Systems with Applications, 2019, 124: 67-81. |
23 | Tang Z H, Xie X W, Cai J J, et al. An optimization method of multi-objective evacuation path for off-site emergency under severe nuclear accidents[J]. Annals of Nuclear Energy, 2022, 174: 109170. |
24 | Yang X, Ban X G, Mitchell J. Modeling multimodal transportation network emergency evacuation considering evacuees’cooperative behavior[J]. Transportation Research Part A:Policy and Practice, 2018, 114: 380-397. |
25 | Alam M J, Habib M A. A dynamic programming optimization for traffic microsimulation modelling of a mass evacuation[J]. Transportation Research Part D:Transport and Environment, 2021, 97: 102946. |
26 | Feng J R, Gai W M, Li J Y. Multi-objective optimization of rescue station selection for emergency logistics management[J]. Safety Science, 2019, 120: 276-282. |
27 | Yang Y, Ma C X, Ling G. Pre-location for temporary distribution station of urban emergency materials considering priority under COVID-19: A case study of wuhan city, China[J]. Physica A: Statistical Mechanics and its Applications 2022, 597: 127291. |
28 | Liu K L, Zhang H L, Zhang Z H. The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach[J]. Transportation research Part E:Logistics and Transportation Review, 2021, 156: 102521. |
29 | Wang Y, Peng S G, Xu M. Emergency logistics network design based on space-time resource configuration[J]. Knowledge-Based Systems, 2021, 223: 107041. |
30 | Liu H S, Sun Y X, Pan N, et al. Study on the optimization of urban emergency supplies distribution paths for epidemic outbreaks[J]. Computers & Operations Research, 2022, 146: 105912. |
31 | Wang Y, Wang X W, Fan J X, et al. Emergency logistics network optimization with time window assignment[J]. Expert Systems with Applications, 2023, 214: 119145. |
32 | Feizizadeh B, Omarzadeh D, Ronagh Z, et al. A scenario-based approach for urban water management in the context of the COVID-19 pandemic and a case study for the Tabriz metropolitan area, Iran[J]. Science of the Total Environment, 2021, 790: 148272. |
33 | Bakhtiari P H, Nikoo M R, Izady A, et al. A coupled agent-based risk-based optimization model for integrated urban water management[J]. Sustainable Cities and Society, 2020, 53: 101922. |
34 | Xiang X, Li Q, Khan S, et al. Urban water resource management for sustainable environment planning using artificial intelligence techniques[J]. Environmental Impact Assessment Review, 2021, 86: 106515. |
35 | Yyla B, Lei L, Ysl B, et al. Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning[J]. Atmospheric Research, 2020, 237: 104861. |
36 | Wang Y M, Zhang X D, Zhang D Z, et al. The structure design of integrated urban drainage systems: A view of robust optimization[J]. Journal of Environmental Management, 2022, 322: 116050. |
37 | She L, Wei M, You X Y. Multi-objective layout optimization for sponge city by annealing algorithm and its environmental benefits analysis[J]. Sustainable Cities and Society, 2021, 66(2): 102706. |
38 | Wan S Y, Xu L Y, Qi Q, et al. Building a multi-objective optimization model for sponge city projects[J]. Urban Climate, 2022, 43: 101171. |
39 | Ottenburger S S, Akmak H K, Jakob W, et al. A novel optimization method for urban resilient and fair power distribution preventing critical network states[J]. International Journal of Critical Infrastructure Protection, 2020, 29: 100354. |
40 | Liu W, Yang Y B, Xu Q S, et al. Multi-target prediction model of urban distribution system rainfall-caused outage based on spatiotemporal fusion[J]. International Journal of Electrical Power & Energy Systems, 2023, 146: 108640. |
41 | Cui H, Xia W, Yang S, et al. Real-time emergency demand response strategy for optimal load dispatch of heat and power micro-grids[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106127. |
42 | Zhang Y, Guo Q, Zhou Y, et al. Frequency-constrained unit commitment for power systems with high renewable energy penetration[J]. International Journal of Electrical Power & Energy Systems, 2023, 153: 109274. |
43 | Ardakani F F, Mozafari S B, Soleymani S. Scheduling energy and spinning reserve based on linear chance constrained optimization for a wind integrated power system[J]. Ain Shams Engineering Journal, 2022, 13(3): 101582. |
44 | Ghasemi S, Moshtagh J. Distribution system restoration after extreme events considering distributed generators and static energy storage systems with mobile energy storage systems dispatch in transportation systems[J]. Applied Energy, 2022, 310: 118507. |
45 | Lu H, Azimi M, Iseley T. Short-term load forecasting of urban gas using a hybrid model based on improved fruit fly optimization algorithm and support vector machine[J]. Energy Reports, 2019(5): 666-677. |
46 | Ma D L, Wu R T, Li Z K, et al. A new method to forecast multi-time scale load of natural gas based on augmentation data-machine learning model[J]. Chinese Journal of Chemical Engineering, 2022, 48: 166-175. |
47 | Deng Y Q, Ma X, Zhang P, et al. Multi-step ahead forecasting of daily urban gas load in Chengdu using a Tanimoto kernel-based NAR model and Whale optimization[J]. Energy, 2022, 260: 124993. |
48 | Habibi F, Asadi E, Sadjadi S J, et al. A multi-objective robust optimization model for site-selection and capacity allocation of municipal solid waste facilities: A case study in Tehran[J]. Journal of Cleaner Production, 2017, 166: 816-834. |
49 | Zhuo Q N, Yan W L. Optimizing the number and location of household waste collection sites by multi-maximal covering location model: An empirical study in Minamata City, Kumamoto Prefecture, Japan[J]. Journal of Cleaner Production, 2022, 379: 134644. |
50 | Pouriani S, Asadi G E, Paydar M M. A robust bi-level optimization modelling approach for municipal solid waste management: A real case study of Iran[J]. Journal of Cleaner Production, 2019, 240: 118125. |
51 | Moazzeni S, Tavana M, Darmian S M. A dynamic location-arc routing optimization model for electric waste collection vehicles[J]. Journal of Cleaner Production, 2022, 364: 132571. |
52 | Hu C, Liu X, Lu J, et al. Distributionally robust optimization for power trading of waste-to-energy plants under uncertainty[J]. Applied Energy, 2020, 276: 115509. |
53 | Teng S Y, Masa V, Tous M, et al. Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach[J]. Renewable Energy, 2022, 181: 142-155. |
54 | Kardani N, Zhou A, Nazem M. Modelling of municipal solid waste gasification using an optimised ensemble soft computing model[J]. Fuel, 2021, 289: 119903. |
55 | Liu Z J, Xu C Q, Xu T, et al. Integrating socioecological indexes in multi objective intelligent optimization of green-grey coupled infrastructures[J]. Resources, Conservation and Recycling, 2021, 174: 105801. |
56 | Torres M N, Fontecha J E, Walteros J L, et al. City-scale optimal location planning of green infrastructure using piece-wise linear interpolation and exact optimization methods[J]. Journal of Hydrology, 2021, 601: 126540. |
57 | Feng L, Mi X, Yuan D. Optimal planning of urban greening system in response to urban microenvironments in a high-density city using genetic algorithm: A case study of Tianjin[J]. Sustainable Cities and Society, 2022, 87: 104244. |
58 | Li X, Li X S, Ma X D. Spatial optimization for urban green space (UGS) planning support using a heuristic approach[J]. Applied Geography, 2022, 138: 102622. |
59 | Huang H C, Yang H L, Chen Y L, et al. Urban green space optimization based on a climate health risk appraisal-A case study of Beijing city, China[J]. Urban Forestry & Urban Greening, 2021, 62: 127154. |
60 | Zhuang Q R, Lu Z M. Optimization of roof greening spatial planning to cool down the summer of the city[J]. Sustainable Cities and Society, 2021, 74: 103221. |
61 | Zhou J G, Xu Z X, Wang S G. A novel dual-scale ensemble learning paradigm with error correction for predicting daily ozone concentration based on multi-decomposition process and intelligent algorithm optimization, and its application in heavily polluted regions of China[J]. Atmospheric Pollution Research, 2022, 13: 101306. |
62 | Wang W, An X, Li Q, et al. Optimization research on air quality numerical model forecasting effects based on deep learning methods[J]. Atmospheric Research, 2022, 271: 106082. |
63 | Wang J Z, Bai L, Wang S Q, et al. Research and application of the hybrid forecasting model based on secondary denoising and multi-objective optimization for air pollution early warning system[J]. Journal of Cleaner Production, 2019, 234: 54-70. |
64 | Huang B, Pan Z, Wang G. A methodology to control urban traffic noise under the constraint of environmental capacity: A case study of a double-decision optimization model[J]. Transportation Research Part D:Transport and Environment, 2015, 41: 257-270. |
65 | Wang H, Sun B, Chen L. An optimization model for planning road networks that considers traffic noise impact[J]. Applied Acoustics, 2022, 192: 108693. |
66 | Hou Q, Cai M, Wang H B. Dynamic modeling of traffic noise in both indoor and outdoor environments by using a ray tracing method[J]. Building and Environment, 2017, 121: 225-237. |
67 | Rodríguez E O, Albores P, Brewster C. Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods[J]. European Journal of Operational Research, 2018, 264(3): 978-993. |
68 | Ghasemi P, Khalili D K. A robust simulation-optimization approach for pre-disaster multi-period location-allocation-inventory planning[J]. Mathematics and Computers in Simulation, 2021, 179: 69-95. |
69 | Wang J, Cai J, Yue X, et al. Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 150(4): 102344. |
70 | Chaudhuri N, Bose I. Exploring the role of deep neural networks for post-disaster decision support[J]. Decision Support Systems, 2020, 130: 113234. |
71 | Chang K H, Wu Y Z, Ke S S. A simulation-based decision support tool for dynamic post-disaster pedestrian evacuation[J]. Decision Support Systems, 2022, 157: 113743. |
72 | Ardianto R, Chhetri P. Modeling spatial-temporal dynamics of urban residential fire risk using a markov chain technique[J]. International Journal of Disaster Risk Science, 2019, 10(1): 57-73. |
73 | Jin G Y, Wang Q, Zhu C C, et al. Urban fire situation forecasting: Deep sequence learning with spatio-temporal dynamics[J]. Applied Soft Computing, 2020, 97:106730. |
74 | Nyimbili P H, Erden T. GIS-based fuzzy multi-criteria approach for optimal site selection of fire stations in istanbul, turkey [J]. Socio-Economic Planning Sciences, 2020, 71: 100860. |
75 | Rodriguez S A, De la Fuente R A, Aguayo M M. A facility location and equipment emplacement technique model with expected coverage for the location of fire stations in the concepción province, Chile[J]. Computers & Industrial Engineering, 2020, 147: 106522. |
76 | Rodriguez S A, Fuente R, Aguayo M M, et al. A simulation-optimization approach for the facility location and vehicle assignment problem for firefighters using a loosely coupled spatio-temporal arrival process[J]. Computers & Industrial Engineering, 2021, 157(3): 107242. |
77 | Liu Q, He R F, Zhang L M. Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations[J]. Reliability Engineering & System Safety, 2022, 228: 108820. |
78 | Fritze R, Graser A, Sinnl M. Combining spatial information and optimization for locating emergency medical service stations: A case study for lower austria[J]. International Journal of Medical Informatics, 2018, 111: 24-36. |
79 | Oksuz M K, Satoglu S I. A two-stage stochastic model for location planning of temporary medical centers for disaster response[J]. International Journal of Disaster Risk Reduction, 2020, 44: 101426. |
80 | Luo L, Wan X Y, Wang Q Y. A multi-period location-allocation model for integrated management of emergency medical supplies and infected patients during epidemics[J]. Computers & Industrial Engineering, 2022, 173: 108640. |
81 | 孙莹, 刘慧萍, 颜瑞,等. 基于韧性和社会福利的应急医疗物资供应链均衡优化[J]. 中国管理科学, 2023, 31(8): 132-141. |
Sun Y, Liu H P, Yan R, et al. Equilibrium optimization of the supply chain of emergency medical supplies based on resilience and social welfare[J]. Chinese Journal of Management Science, 2023, 31(8): 132-141. | |
82 | Liu J, Bai J, Wu D. Medical supplies scheduling in major public health emergencies[J]. Transportation Research Part E:Logistics and Transportation Review, 2021, 154(2): 102464. |
83 | Jagtenberg C J, Van D, Van D. Benchmarking online dispatch algorithms for emergency medical services[J]. European Journal of Operational Research, 2017, 258: 715-725. |
84 | Khan S I, Qadir Z, Munawar H S, et al. UAVs path planning architecture for effective medical emergency response in future networks[J]. Physical Communication, 2021, 47: 101337. |
85 | Ouallane A A, Bakali A, Bahnasse A, et al. Fusion of engineering insights and emerging trends: Intelligent urban traffic management system[J]. Information Fusion, 2022, 88: 218-248. |
86 | Yang X Y, Liu G Q, Guo Q Y, et al. Triboelectric sensor array for internet of things based smart traffic monitoring and management system[J]. Nano Energy, 2022, 92: 106757. |
87 | Devi T, Alice K, Deepa N. Traffic management in smart cities using support vector machine for predicting the accuracy during peak traffic conditions[J]. Materials Today: Proceedings, 2022, 62: 4980-4984. |
88 | Shi Y H, Lin Y, Lim M K, et al. An intelligent green scheduling system for sustainable cold chain logistics[J]. Expert Systems with Applications, 2022, 209: 118378. |
89 | Zhan J S, Dong S F, Hu W. Ioe-supported smart logistics network communication with optimization and security[J]. Sustainable energy technologies and assessments, 2022, 52: 102052. |
90 | Raghavendra S, Neelakandan S, Prakash M, et al. Artificial humming bird with data science enabled stability prediction model for smart grids[J]. Sustainable Computing: Informatics and Systems, 2022, 36: 100821. |
91 | Mohammadi Y, Hamed S G, Kazemi A. A multi-objective fuzzy optimization model for electricity generation and consumption management in a micro smart grid[J]. Sustainable Cities and Society, 2022, 86: 104119. |
92 | Bolurian A, Akbari H, Mousavi S, et al. Bi-level energy management model for the smart grid considering customer behavior in the wireless sensor network platform[J]. Sustainable Cities and Society, 2023, 88: 104281. |
93 | Rajesh P, Shajin F H, Kannayeram G. A novel intelligent technique for energy management in smart home using internet of things[J]. Applied Soft Computing, 2022, 128: 109442. |
94 | Chen Z, Sivaparthipan C B, Muthu B. Iot based smart and intelligent smart city energy optimization[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101724. |
95 | 段妍婷,胡斌,余良,等. 物联网环境下环卫组织变革研究——以深圳智慧环卫建设为例[J]. 管理世界, 2021, 37(8): 207-225. |
Duan Y T, Hu B, Yu L, et al. Research on organizational reform of sanitation in iot environment: A case study of smart sanitation construction in shenzhen[J]. Journal of Management World,2021,37(8): 207-225. | |
96 | Roy A, Manna A, Kim J, et al. IoT-based smart bin allocation and vehicle routing in solid waste management: A case study in South Korea[J]. Computers & Industrial Engineering, 2022, 171: 108457. |
97 | Li V O, Lam J C, Han Y, et al. A big data and artificial intelligence framework for smart and personalized air pollution monitoring and health management in hong kong[J]. Environmental Science and Policy, 2021, 124: 441-450. |
98 | Roldán J, Boubeta P J, Martínez J L, et al. Integrating complex event processing and machine learning: An intelligent architecture for detecting iot security attacks[J]. Expert Systems with Applications, 2020, 149: 113251. |
99 | Fuqua D, Hespeler S. Commodity demand forecasting using modulated rank reduction for humanitarian logistics planning[J]. Expert Systems with Applications, 2022, 206: 117753. |
100 | 王田, 梁洋洋. 基于智能电网技术的能源网络供应链买电策略研究[J]. 中国管理科学, 2021, 29(7): 110-117. |
Wang T, Liang Y Y. Optimal energy procurement policies in smart grid energy supply chain networks[J]. Chinese Journal of Management Science, 2021, 29(7): 110-117. | |
101 | 陈真杰, 王国庆, 朱建明. 电网与天然气网络协同下配电网线路加固决策研究[J]. 中国管理科学, 2022, 30(12): 293-304. |
Chen Z J, Wang G Q, Zhu J M. Research on distribution network line hardening decision under the cooperation of power grid and natural gas network[J]. Chinese Journal of Management Science, 2022, 30(12): 293-304. |
[1] | 黄丽,叶春明,郭鹏. 基于韧性城市视角的突发事件下分布式应急手术调度研究[J]. 中国管理科学, 2024, 32(1): 94-105. |
[2] | 张维月, 刘晨光, 李琳, 焦金霞. 两阶段供应链碳排放目标减排量分配研究[J]. 中国管理科学, 2021, 29(9): 90-101. |
[3] | 张尧, 孙梦阳, 关欣. 考虑风险总关联的项目风险应对策略选择方法[J]. 中国管理科学, 2020, 28(1): 32-44. |
[4] | 王晶, 刘昊天, 朱建明. 基于韧性城市视角的冰雪天气下路网恢复问题研究[J]. 中国管理科学, 2018, 26(3): 177-187. |
[5] | 齐二石, 李辉, 刘亮. 基于遗传算法的虚拟企业协同资源优化问题研究[J]. 中国管理科学, 2011, 19(1): 77-83. |
[6] | 蓝伯雄, 王亚明, 王威. 企业资源优化与企业价值链分析[J]. 中国管理科学, 2011, 19(1): 69-76. |
[7] | 蓝伯雄, 姜楠, 郑燕. 求解大规模生产批量问题的启发式算法[J]. 中国管理科学, 2010, 18(2): 81-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|