中国管理科学 ›› 2021, Vol. 29 ›› Issue (11): 1-12.doi: 10.16381/j.cnki.issn1003-207x.2020.0763
• 论文 • 下一篇
蔡光辉, 项琳
收稿日期:
2020-04-27
修回日期:
2020-08-11
出版日期:
2021-11-20
发布日期:
2021-11-22
通讯作者:
项琳(1994-),女(汉族),浙江衢州人,浙江工商大学统计与数学学院,博士研究生,研究方向:金融风险管理,Email:xlin430@foxmail.com.
E-mail:xlin430@foxmail.com
基金资助:
CAI Guang-hui, XIANG Lin
Received:
2020-04-27
Revised:
2020-08-11
Online:
2021-11-20
Published:
2021-11-22
Contact:
项琳
E-mail:xlin430@foxmail.com
摘要: 为探究中国铜期货市场价格波动的变化规律并以此预测其风险值,以沪铜期货高频价格数据为样本,综合考虑其收益率波动的聚集性、偏峰厚尾性与长记忆性,将广义已实现测度引入偏t分布假设下的Realized GARCH模型与拓展的Realized HAR GARCH模型中,并通过样本内拟合与样本外滚动预测,结合似然函数、VaR后验测试与损失函数MCS检验法综合比较了采用不同已实现测度的Realized GARCH以及Realized HAR GARCH模型在沪铜期货收益波动率估计和VaR预测上的效果。实证结果显示:对于沪铜期货市场而言,无论是波动率估计还是风险预测,广义已实现测度的引入显著地提升了Realized GARCH与Realized HAR GARCH模型的拟合效果与预测能力,其中基于日内损失RMAD与RES测度下的Realized HAR GARCH模型分别拥有最优的估计与预测表现。
中图分类号:
蔡光辉, 项琳. 中国铜期货市场波动率估计与风险度量——基于广义已实现测度的Realized HAR GARCH模型[J]. 中国管理科学, 2021, 29(11): 1-12.
CAI Guang-hui, XIANG Lin. The Volatility Estimation and VaR Measurement of China’s Copper Future Market: Based on Realized HAR GARCH Model Incorporating Generalized Realized Measures[J]. Chinese Journal of Management Science, 2021, 29(11): 1-12.
[1] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4): 885-905. [2] Engle R F. New frontiers for Arch models[J]. Journal of Applied Econometrics, 2002, 17(5): 425-446. [3] Hansen P R, Huang Zhuo, Shek H H. Realized GARCH: A joint model for returns and realized measures of volatility[J]. Journal of Applied Econometrics, 2012, 27(6): 877-906. [4] 王天一, 黄卓. 高频数据波动率建模—基于厚尾分布的Realized GARCH模型[J]. 数量经济技术经济研究, 2012, 29(5): 149-161.Wang Tianyi, Huang Zhuo. High frequency volatility modeling[J]. The Journal of Quantitative & Technical Economics, 2012, 29(5): 149-161. [5] 于孝建, 王秀花. 基于混频已实现GARCH模型的波动预测与VaR度量[J]. 统计研究, 2018, 35(1): 104-116.Yu Xiaojian, Wang Xiuhua. Mix frequency Realized GARCH models: The forecast of volatility and measure of VaR[J]. Statistical Research, 2018, 35(1): 104-116. [6] Muller U A, Dacorogna M M, Dave R D, et al. Volatilities of different time resolutions-Analyzing the dynamics of market components[J]. Journal of Empirical Finance, 1997, 4(2): 213-239. [7] Bollerslev T, Mikkelsen, H O. Modeling and pricing long memory in stock market volatility[J]. Journal of Econometrics, 1996, 73(1): 151-184. [8] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Economics, 2009, 7(2): 174-196. [9] 朱学红, 邹佳纹, 韩飞燕, 等. 引入外部冲击的中国铜期货市场高频波动率建模与预测[J]. 中国管理科学, 2018, 26(9): 52-61.Zhu Xuehong, Zou Jiawen, Han Feiyan, etal. Forecasting and modeling of China’s nonferrous metal futures market volatility based on the introduction of external shocks: Taking copper as example[J]. Chinese Journal of Management Science, 2018, 26(9): 52-61. [10] Huang Zhuo, Liu Hao, Wang Tianyi. Modeling long memory volatility using realized measures of volatility: A realized HAR GARCH model[J]. Economic Modelling, 2016, 52: 812-821. [11] 王天一, 刘浩, 黄卓. 基于混频数据抽样的已实现波动率长记忆模型[J]. 系统工程学报, 2018, 33(6): 812-822.Wang Tianyi, Liu Hao, Huang Zhuo. Model for the long memory of realized volatility based on mixed data sampling[J]. Journal of Systems Engineering, 2018, 33(6): 812-822. [12] 秦学志, 林先伟, 王文华. 基于长记忆性特征的欧式期权模糊定价研究[J]. 系统工程理论与实践, 2019, 39(12): 3073-3083.Qin Xuezhi, Lin Xianwei, Wang Wenhua. Fuzzy pricing of European option based on the long-term memory property[J]. Systems Engineering-Theory & Practice, 2019, 39(12): 3073-3083. [13] Louzis D P, Xanthopoulos-Sisinis S, Refenes A P. The role of high frequency intra-daily data, daily range and implied volatility in multi-period value-at-risk forecasting[J]. Journal of Forecasting, 2013, 32(6): 561-576. [14] 黄友珀, 唐振鹏, 周熙雯. 基于偏t分布realized GARCH模型的尾部风险估计[J]. 系统工程理论与实践, 2015, 35(9): 2200-2208.Huang Youpo, Tang Zhenpeng, Zhou Xiwen. Estimation of tail risk based on realized GARCH model with skew-t distribution[J]. Systems Engineering-Theory & Practice, 2015, 35(9): 2200-2208. [15] 蒋伟, 顾研. 基于广义已实现测度的Realized GARCH模型改进及应用[J]. 数量经济技术经济研究, 2019, 36(7): 156-173.Jiang Wei, Gu Yan. Forecasting VaR: Realized GARCH incorporating generalized realized measures[J]. The Journal of Quantitative & Technical Economics, 2019, 36(7): 156-173. [16] Barndorff-Nielsen O E, Shephard N. Estimating quadratic variation using realized variance[J]. Journal of Applied Econometrics, 2002, 17(5): 457-477. [17] Barndorff-Nielsen O E, Shephard N. Power and bipowervariation with stochastic volatility and jumps[J]. Journal of Financial Economics, 2004, 2(1): 1-37. [18] Bandi F M, Russell J R. Microstructure noise, realized volatility, and optimal sampling[J]. Review of Economic Studies, 2008, 75(2): 339-369. [19] Andersen T G, Dobrev D, Schaumburg E. Jump-robust volatility estimation using nearest neighbor truncation[J]. Journal of Econometrics, 2012, 169(1): 75-93. [20] Jorion P. Measuring the risk in value at risk[J]. Financial Analysts Journal, 1996, 6(1): 47-56. [21] Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26(7): 1487-1503. [22] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2): 73-84. [23] Christoffersen P F. Evaluating interval forecasts[J]. International Economic Journal, 1998, 39(4): 841-862. [24] González-Rivera G, Lee T H, Mishra S. Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood[J]. International Journal of Forecasting, 2004, 20(4): 629-645. [25] Sarma M, Thomas S, Shah A. Selection of value-at-risk models[J]. Journal of Forecasting, 2003, 22(4): 337-358. [26] Hansen P R, Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?[J]. Journal of Applied Econometrics, 2005, 20(7): 873-889. [27] Hansen P R, Lunde A, Nason J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. [28] 陈晓东. 中国金属期货市场高频波动率预测模型比较研究[J]. 管理工程学报, 2016, 30(3): 114-120.Chen Xiaodong. Comparative study on prediction model of high-frequency fluctuation of China's futures market[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30(3): 114-120. [29] Hurst H E. Long-term storage capacity of reservoirs[J]. American Society of Civil Engineers, 1951, 116: 770-799. [30] Peters E E. Chaos and order in the capital markets: A new view of cycles, prices, and market volatility[M]. New York: John Wiley and Sons Inc, 1991. [31] 郑丰, 崔积钰, 马志伟. 沪铜期货市场长记忆特征的R/S分析[J]. 辽宁大学学报(自然科学版), 2013, 40(1): 14-20.Zheng Feng, Cui Jiyu. Ma Zhiwei. R/S analysis on long-term memory characteristics of copper future market in SHFE[J]. Journal of Liaoning University (Natural Science Edition), 2013, 40(1): 14-20. |
[1] | 郭冉冉,叶五一,刘小泉,缪柏其. 商品期货投资组合与市场收益的尾部相依研究[J]. 中国管理科学, 2024, 32(10): 11-19. |
[2] | 韩鑫韬,张晓敏,刘星. 宏观审慎管理配合下的最优货币政策选择[J]. 中国管理科学, 2024, 32(10): 1-10. |
[3] | 成思聪,王天一. 引入隔夜信息的期权定价模型研究[J]. 中国管理科学, 2024, 32(9): 1-10. |
[4] | 吴鑫育,谢海滨,马超群. 经济政策不确定性与人民币汇率波动率[J]. 中国管理科学, 2024, 32(8): 1-14. |
[5] | 谢楠,何海涛,周艳菊,王宗润. 乡村振兴背景下基于中央政府项目补贴分析的供应链金融决策研究[J]. 中国管理科学, 2024, 32(8): 214-229. |
[6] | 于孝建,刘国鹏,刘建林,肖炜麟. 基于LSTM网络和文本情感分析的股票指数预测[J]. 中国管理科学, 2024, 32(8): 25-35. |
[7] | 倪宣明,郑田田,赵慧敏,武康平. 基于最优异质收益率因子的资产定价研究[J]. 中国管理科学, 2024, 32(8): 50-60. |
[8] | 于文华,任向阳,杨坤,魏宇. 传染病不确定性对大宗商品期货价格波动的非对称影响研究[J]. 中国管理科学, 2024, 32(5): 254-264. |
[9] | 蔡毅,唐振鹏,吴俊传,杜晓旭,陈凯杰. 基于灰狼优化的混频支持向量机在股指预测与投资决策中的应用研究[J]. 中国管理科学, 2024, 32(5): 73-80. |
[10] | 李仲飞,周骐. 一个基于BL模型和复杂网络的行业配置模型[J]. 中国管理科学, 2024, 32(4): 1-13. |
[11] | 张雪彤,张卫国,王超. 发达市场与新兴市场的尾部风险[J]. 中国管理科学, 2024, 32(4): 14-25. |
[12] | 尹海员,寇文娟. 基于朴素贝叶斯法的投资者情绪度量及其对股票特质风险的影响[J]. 中国管理科学, 2024, 32(4): 38-47. |
[13] | 王晓燕,杨胜刚,张科坤. 终极所有权结构与企业委托贷款行为[J]. 中国管理科学, 2024, 32(4): 48-57. |
[14] | 李爱忠,任若恩,董纪昌. 图网络风险感知与稀疏低秩的组合管理策略[J]. 中国管理科学, 2024, 32(4): 58-65. |
[15] | 吴鑫育,姜晓晴,李心丹,马超群. 基于已实现EGARCH-FHS模型的上证50ETF期权定价研究[J]. 中国管理科学, 2024, 32(3): 105-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|