主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (5): 1-12.doi: 10.16381/j.cnki.issn1003-207x.2021.0521cstr: 32146.14.j.cnki.issn1003-207x.2021.0521

• •    下一篇

中国金融市场风险溢出效应、冲击效应与风险预警研究

刘超(), 高凤凤, 张梦婉, 谢启伟   

  1. 北京工业大学经济与管理学院,北京 100124
  • 收稿日期:2021-03-07 修回日期:2021-08-25 出版日期:2025-05-25 发布日期:2025-06-04
  • 通讯作者: 刘超 E-mail:liuchao@bjut.edu.cn
  • 基金资助:
    国家自然科学基金项目(62073007)

Research on Risk Spillover Effect, Impact Effect and Risk Early Warning in China's Financial Market

Chao Liu(), Fengfeng Gao, Mengwan Zhang, Qiwei Xie   

  1. School of Economics and Management,Beijing University of Technology,Beijing 100124
  • Received:2021-03-07 Revised:2021-08-25 Online:2025-05-25 Published:2025-06-04
  • Contact: Chao Liu E-mail:liuchao@bjut.edu.cn

摘要:

基于复杂系统科学和深度学习理论,采用广义预测误差方差分解和复杂网络方法,研究我国金融市场风险溢出效应,并从宏观经济、微观个体行为、网络结构层面探究各因素对金融风险溢出的冲击效应,进而基于深度信念网络优化模型对金融风险溢出进行预警研究。风险溢出效应结果表明,金融市场内风险溢出效应显著高于金融市场间,金融市场风险网络结构呈动态演化发展,股票市场和房地产市场成为主要风险溢出方和接受方。冲击效应研究表明,宏观经济、微观个体行为与金融风险溢出之间存在阶段性、负相关性特征,即宏观经济上行和消费乐观预期促使金融风险溢出回归低位,反之,宏观经济下行和消费低迷预期会助长金融风险溢出,而网络结构与金融风险溢出之间则存在着复杂的关联性。预警结果表明,深度信念网络优化模型提高了金融风险预测精度,也验证了上述指标均可纳入到金融风险预警管理中。上述结果为构建金融风险预警机制、金融风险防控措施制定、宏观经济调控政策制定提供依据,对实现宏观经济稳增长与金融系统防风险动态平衡发展具有重要意义。

关键词: 金融市场, 冲击效应, 风险预警, 深度学习, 深度信念网络

Abstract:

Due to the complex dynamic evolution of correlations within financial systems, the diversified, multi-channel characteristics of financial risk contagion and its spillover effects have become increasingly prominent. Concurrently, the challenges associated with systemic financial risk prevention and control have intensified, making effective risk management a critical issue requiring urgent solutions. This study investigates China's money market, capital market, foreign exchange market, gold market, and real estate market. Firstly, we employ generalized forecast error variance decomposition and complex network analysis to examine risk spillover effects in China's financial markets from both static and dynamic perspectives. Subsequently, a Time-Varying Parameter Vector Autoregression (TVP-VAR) model is utilized to explore the impact of macroeconomic conditions, micro-level individual behaviors, and network topology on systemic financial risk spillovers. Finally, we enhance the prediction accuracy of systemic financial risk by optimizing BP neural network and Logit models through deep belief network architecture. The experimental results reveal three key findings (i) Risk spillover analysis demonstrates that cross-market spillover effects significantly surpass intra-market effects. Volatile economic conditions have substantially altered risk transmission pathways, with the stock market and real estate market emerging as primary risk transmitters and receivers. (ii) Impact effect analysis shows an inverse relationship between macroeconomic performance/micro-level expectations and systemic financial risk. Economic expansion and optimistic consumption expectations correlate with subdued risk spillovers, whereas economic contraction and pessimistic expectations amplify systemic risk propagation. Network structure exhibits complex nonlinear associations with risk spillovers. (iii) Risk early warning tests indicate that deep belief network-optimized models significantly improve systemic risk prediction accuracy, validating the inclusion of these indicators in financial risk warning systems. These findings provide substantial theoretical support for establishing systemic financial risk warning mechanisms, formulating risk prevention strategies, and developing macroeconomic regulation policies. The research holds significant practical value for maintaining stable economic growth and achieving dynamic equilibrium in financial risk management.

Key words: financial markets, impact effect, risk early warning, deep learning, deep belief network

中图分类号: