中国管理科学 ›› 2025, Vol. 33 ›› Issue (1): 62-75.doi: 10.16381/j.cnki.issn1003-207x.2024.1095cstr: 32146.14.j.cnki.issn1003-207x.2024.1095
收稿日期:2024-06-29
修回日期:2024-09-10
出版日期:2025-01-25
发布日期:2025-02-14
通讯作者:
徐玖平
E-mail:xujiuping@scu.edu.cn
基金资助:Received:2024-06-29
Revised:2024-09-10
Online:2025-01-25
Published:2025-02-14
Contact:
Jiuping Xu
E-mail:xujiuping@scu.edu.cn
摘要:
实现“双碳”目标,亟需将我国的电力供应体系转变为以可再生能源为主。多能互补发电通过在电源侧整合传统能源与新能源进行优势互补,是降低电力行业碳排、消纳新能源的重要手段。但现有多能互补发电系统优化研究要么聚焦于小规模分布式系统,要么侧重大规模能源基地,忽略了中等规模集中式电站(如火电站)层面的大量实践。因此,本文从系统角度出发,考虑分布式电站-集中式电站-集中式电站群层面的多能互补实践,提出多能互补发电系统的概念框架。针对概念框架所提出的共建型、共燃型、共运行型三类多能互补发电系统,可视化分析现有研究的知识图谱,如重点期刊、热点变迁等。梳理重点文献,提炼出多能互补发电系统集成优化的三个重点领域:共建型互补系统的容量优化、共燃型互补系统的排放优化和共运行互补系统的调度优化,归纳三个领域10种关键技术的研究现状、效果和影响,并一一对应地提出未来展望。本文对从系统角度了解多能互补发电系统具有重要参考价值。
中图分类号:
王凤娟,徐玖平. 多能互补发电系统:概念框架、知识图谱与集成优化[J]. 中国管理科学, 2025, 33(1): 62-75.
Fengjuan Wang,Jiuping Xu. Multi-energy Complementary Generation Systems: Conceptual Framework, Knowledge Map and Integrated Optimization[J]. Chinese Journal of Management Science, 2025, 33(1): 62-75.
| 1 | 国务院. 中国的能源转型[EB/OL], (2024-08-29) [2024-09-10] |
| Council State. China’s Energy Transition [EB/OL],2024.(2024-08-29)[2024-09-10] | |
| 2 | 钱一晨,金晶.可再生能源混合系统电源优化配置综述[J].太阳能学报,2012,33(S1):98-102. |
| Qian Y C, Jin J. Summary of optimal allocation of renewable energy hybrid system power[J]. Acta Energiae Solaris Sinica,2012,33(S1):98-102. | |
| 3 | 鲁卓欣,徐潇源,严正,等.不确定性环境下数据驱动的电力系统优化调度方法综述[J].电力系统自动化,2020,44(21):172-183. |
| Lu Z X, Xu X Y, Yan Z, et al. Overview on data-driven optimal scheduling methods of power system in uncertain environment[J]. Automation of Electric Power Systems, 2020, 44(21): 172-183. | |
| 4 | 谢庭渝, 王洪宾. 因地制宜 多能互补[J]. 可再生能源, 1984(1):30. |
| Xie T Y, Wang H B. Complementing energy sources according to local conditions[J]. Renewable Energy, 1984(1): 30. | |
| 5 | 于沛儒. 建设以薪炭林为主多能互补的能源体系[J]. 中国能源, 1986(3): 32-33. |
| Yu P R. Building a multi-energy complementary system based on fuel woodlands[J]. Energy of China, 1986(3): 32-33. | |
| 6 | 庞万才. 多能互补综合利用,建立生态农业系统[J]. 内蒙古农业科技, 1991(1): 40-41. |
| Pang W C. Comprehensive utilization of multi-energy and establishment of eco-agricultural system[J]. Inner Mongolia Agricultural Science and Technology, 1991 (1): 40-41. | |
| 7 | 朱念. 上海多能互补体系的思考[J]. 现代节能, 1995 (4): 28-30. |
| Zhu N. Reflections on shanghai’s multi-energy complementary system[J]. Modern Energy Conservation, 1995 (4): 28-30. | |
| 8 | 高芳,张静. 多能互补耦合供能系统在城市化建设中的应用[J]. 低碳世界, 2011(6): 14. |
| Gao F, Zhang J. Application of multi-energy complementary energy supply system in urbanization[J]. Low Carbon World, 2011(6): 14. | |
| 9 | 梁浩,张峰,龙惟定.基于多能互补的区域能源系统优化模型[J].暖通空调,2012,42(7):67-71+60. |
| Liang H, Zhang F, Long W D. Optimization model of complementary district energy system based on multi-energy-sources[J]. Heating Ventilating & Air Conditioning, 2012,42(7): 67-71+60. | |
| 10 | He Y, Guo S, Dong P, et al. A state-of-the-art review and bibliometric analysis on the sizing optimization of off-grid hybrid renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113476. |
| 11 | Bajpai P, Dash V. Hybrid renewable energy systems for power generation in stand-alone applications: A review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2926-2939. |
| 12 | U.S. Department of Energy. Hybrid energy systems: Opportunities for coordinated research[EB/OL]. Golden, CO: National Renewable Energy Laboratory. DOE/GO-102021-5447, 2021. |
| 13 | Arent D J, Bragg-Sitton S M, Miller D C, et al. Multi-input, multi-output hybrid energy systems[J]. Joule, 2021, 5(1): 47-58. |
| 14 | 毛健雄. 燃煤耦合生物质发电[J]. 分布式能源, 2017,2(5): 47-54. |
| Mao J X. Co-firing biomass with coal for power generation[J]. Distributed Energy, 2017, 2(5):47-54. | |
| 15 | Xu J P, Wang F J. Sustainable hybrid energy systems-carbon neutral approaches, modeling, and case studies [M]. Weinheim:Wiley-VCH, 2024. |
| 16 | Akyuz E, Oktay Z, Dincer I. The techno-economic and environmental aspects of a hybrid PV-diesel-battery power system for remote farm houses[J]. International Journal of Global Warming, 2009, 1(1-3): 392-404. |
| 17 | Aberilla J M, Gallego-Schmid A, Stamford L, et al. Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities[J]. Applied Energy, 2020, 258: 114004. |
| 18 | Nagapurkar P, Smith J D. Techno-economic optimization and environmental life cycle assessment (LCA) of microgrids located in the US using genetic algorithm[J]. Energy Conversion and Management, 2019, 181: 272-291. |
| 19 | Wei M, Patadia S, Kammen D M. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?[J]. Energy Policy, 2010, 38(2): 919-931. |
| 20 | Wang F, Xu J, Liu L, et al. Optimal design and operation of hybrid renewable energy system for drinking water treatment[J]. Energy, 2021, 219: 119673. |
| 21 | 陈昌松,段善旭,殷进军,等.基于发电预测的分布式发电能量管理系统[J].电工技术学报,2010,25(3):150-156. |
| Chen C S, Duan S X, Yin J J, et al. Distributed generation energy management system based on power generation forecast[J]. Journal of Electrotechnology, 2010, 25(3): 150-156. | |
| 22 | Quitoras M R, Campana P E, Rowley P, et al. Remote community integrated energy system optimization including building enclosure improvements and quantitative energy trilemma metrics[J]. Applied Energy, 2020, 267: 115017. |
| 23 | Nesamalar J J D, Suruthi S, Raja S C, et al. Techno-economic analysis of both on-grid and off-grid hybrid energy system with sensitivity analysis for an educational institution[J]. Energy Conversion and Management, 2021, 239: 114188. |
| 24 | Wang T, Li Q, Wang X, et al. An optimized energy management strategy for fuel cell hybrid power system based on maximum efficiency range identification[J]. Journal of Power Sources, 2020, 445: 227333. |
| 25 | He Y, Guo S, Zhou J, et al. The multi-stage framework for optimal sizing and operation of hybrid electrical-thermal energy storage system[J]. Energy, 2022, 245: 123248. |
| 26 | Lee K, Kum D. Complete design space exploration of isolated hybrid renewable energy system via dynamic programming[J]. Energy Conversion and Management, 2019, 196: 920-934. |
| 27 | Gonzalez A, Riba J R, Esteban B, et al. Environmental and cost optimal design of a biomass-Wind-PV electricity generation system[J]. Renewable Energy, 2018, 126: 420-430. |
| 28 | Eriksson E L V, Gray E M A. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems:A critical review[J]. Applied Energy, 2017, 202: 348-364. |
| 29 | 赵春林,马子然,王磊,等. 燃煤掺烧可再生燃料发电烟气多污染物协同控制研究进展[J].中国电机工程学报, 2024, 44(14):5642-5659. |
| Zhao C L, Ma Z R, Wang L, et al. Study on multi-pollutant collaborative control technology of coal-fired mixed with renewable fuel for power generation[J]. Proceedings of the CSEE, 2024, 44(14): 5642-5659. | |
| 30 | 周义, 张守玉, 郎森, 等. 煤粉炉掺烧生物质发电技术研究进展 [J]. 洁净煤技术, 2022, 28(6): 26-34. |
| Zhou Y, Zhang S Y, Lang S, et al. Research progress of biomass blending technology in pulverized coal furnace for power generation[J]. Clean Coal Technology, 2022, 28(6): 26-34. | |
| 31 | 吕庆超,李永发,王长靖,等 .燃煤电厂生物质掺烧比例测量方法研究进展[J].中国电机工程学报, 2024, DOI:10.13334/j.0258-8013.pcsee.240471 . |
| Lv Q C, Li Y F, Wang C J, et al. Research progress on the measurement method of biomass blending ratio in coal-fired power plants[J]. Proceedings of the CSEE. 2024,DOI:10.13334/j.0258-0813.pcsee.240471 . | |
| 32 | Zhang Y L, Liu L C, Kang J N, et al. Economic feasibility assessment of coal-biomass co-firing power generation technology[J]. Energy, 2024, 296: 131092. |
| 33 | Huang Q, Xu J. Carbon tax revenue recycling for biomass/coal co-firing using stackelberg game: A case study of Jiangsu province, China[J]. Energy, 2023, 272: 127037. |
| 34 | Roni M S, Chowdhury S, Mamun S, et al. Biomass co-firing technology with policies, challenges, and opportunities: A global review[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 1089-1101. |
| 35 | 谭厚章,王学斌,杨富鑫,等. 大型燃煤发电机组低碳技术进展[J]. 煤炭学报, 2024, 49(2): 1052-1066. |
| Tan H Z, Wang X B, Yang F X, et al. Progress in low carbon technologies for large-scale coal-fired power plants[J]. Journal of China Coal Society, 2024, 49(2): 1052-1066. | |
| 36 | 颜莹莹,黄荣敏,王保龙,等.燃煤机组掺烧城市污泥发电的干化工艺对比[J].中国给水排水,2023,39(24):53-58. |
| Yan Y Y, Huang R M, Wang B L, et al. Comparison of drying processes of coal-fired units blending municipal sludge for power generation[J]. China Water Supply and Drainage, 2023, 39(24): 53-58. | |
| 37 | Rao M, Ye J, Chen C, et al. Construction of iterative algorithm and economic optimization analysis of co-combustion of sewage sludge with coal[J]. International Journal of Green Energy, 2023, 20(9): 925-933. |
| 38 | Tan P, Ma L, Xia J, et al. Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts[J]. Energy, 2017, 119: 392-399. |
| 39 | Huang Q, Xu J. Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge[J]. Energy, 2020, 211: 118729. |
| 40 | 孙东晓,董志强,刘学明,等.污泥基生物炭的制备技术及环境应用与研究热点[J].净水技术,2021,40(8):16-25. |
| Sun D X, Dong Z Q, Liu X M, et al. Preparation technology of sludge-based biochar and its environmental applications and research hotspots[J]. Water Purification Technology, 2021, 40(8): 16-25. | |
| 41 | 张利娟, 张睿, 刘冬. 燃煤耦合垃圾焚烧发电系统的全流程模拟与评估分析[J]. 洁净煤技术, 2023, 29(9):109-116. |
| Zhang L J, Zhang R, Liu D. Process simulation and evaluation of coal coupled with waste incineration power generation system[J]. Clean Coal Technology, 2023, 29(9):109-116. | |
| 42 | Sahu P, Prabu V. Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems[J]. Energy, 2021, 233: 121053. |
| 43 | Xu J, Huang Q, Wang F. Co-combustion of municipal solid waste and coal for carbon emission reduction: A bi-level multi-objective programming approach[J]. Journal of Cleaner Production, 2020, 272: 121923. |
| 44 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. |
| Li L L, Fan S S, Chen Q X, et al. Research status and prospect of hydrogen storage technology[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. | |
| 45 | 谭厚章,周上坤,杨文俊,等. 氨燃料经济性分析及煤氨混燃研究进展 [J]. 中国电机工程学报, 2023,43 (1):181-191. |
| Tan H Z, Zhou S K, Yang W J, et al. Economic analysis of ammonia and research progress of coal-ammonia co-firing[J]. Proceedings of the CSEE, 2023, 43(1): 181-191. | |
| 46 | Wang Q, Hu Z, Shao W, et al. The present situation, challenges, and prospects of the application of ammonia-coal co-firing technology in power plant boilers[J]. Journal of the Energy Institute, 2024, 113: 101531. |
| 47 | Sun Y, Li Z, Wang Q, et al. Low carbon pathway and life cycle assessment of ammonia co-firing in coal power plants under the context of carbon neutrality[J]. Energy Conversion and Management, 2023, 296: 117648. |
| 48 | Widén J. Correlations between large-scale solar and wind power in a future scenario for sweden[J]. IEEE Transactions on Sustainable Energy, 2011, 2(2): 177-184. |
| 49 | Ren G, Wan J, Liu J, et al. Spatial and temporal assessments of complementarity for renewable energy resources in China[J]. Energy, 2019, 177: 262-275. |
| 50 | Myers J L, Well A D, Lorch Jr R F. Research design and statistical analysis[M]. London: Routledge, 2013. |
| 51 | Wang F, Xu J, Wang Q. Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines[J]. Applied Energy, 2024, 364: 123082. |
| 52 | 乔延辉,韩爽,许彦平,等.基于天气分型的风光出力互补性分析方法[J].电力系统自动化,2021,45(2):82-88. |
| Qiao Y H, Han S, Xu Y P, et al. Analysis method for complementarity between wind and photovoltaic power outputs based on weather classification[J]. Automation of Electric Power Systems, 2021, 45(2): 82-88. | |
| 53 | Sterl S, Liersch S, Koch H, et al. A new approach for assessing synergies of solar and wind power: Implications for west africa[J]. Environmental Research Letters, 2018, 13(9): 094009. |
| 54 | 谭彩霞,谭忠富,杨佳澄,等.“双碳”目标下风光水火联合上网电价设计[J].系统工程理论与实践,2024,44(4):1389-1404. |
| Tan C X, Tan Z F, Yang J C, et al. Design of union feed-in tariff for wind-solar-hydroelectric-thermal under the “dual carbon” goal[J]. Systems Engineering- Theory& Practice, 2024,44(4): 1389-1404. | |
| 55 | 国家能源局. 关于2022年度全国可再生能源电力发展监测评价结果的通报 [EB/OL]. (2023-09-07) [2024-06-10]. . |
| National Energy Administration. Circular on the results of national renewable energy power development monitoring and evaluation for the year 2022[EB/OL]. (2023-09-07) [2024-06-10].. | |
| 56 | 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522. |
| Liu Z Y, Zhang Q P, Dogn C, et al. Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J].Proceedings of the CSEE, 2014, 34(16): 2513-2522. | |
| 57 | 刘连光, 刘鸿熹, 刘自发, 等. 基于古诺模型的风火电合作容量优化[J]. 中国科学: 技术科学, 2016 (5): 467-474. |
| Liu L G, Liu H X, Liu Z F, et al. Capacity optimization of wind and thermal power cooperation based on the gounod model[J]. Science China: Technological Science, 2016 (5): 467-474. | |
| 58 | 刘新苗, 卢洵, 娄源媛, 等. 基于时序运行模拟的风火打捆最优容量配比整定[J]. 电力系统保护与控制, 2021, 49(21): 53-62. |
| Liu X M, Lu X, Lou Y Y, et al. Optimal setting of wind-thermal-bundled capacity ratio based on chronological operation simulation[J]. Power System Protection and Control, 2021, 49(21): 53-62. | |
| 59 | 吴雄, 贺明康, 何雯雯, 等. 考虑储能寿命的风-光-火-储打捆外送系统容量优化配置[J]. 电力系统保护与控制, 2023, 51(15): 66-75. |
| Wu X, He M K, He W W, et al. Optimal capacity of a wind-solar-thermo-storage-bundled power transmission system considering battery life[J]. Power System Protection and Control, 2023, 51(15): 66-75. | |
| 60 | 王义民,刘世帆,李婷婷,等.雅砻江能源基地水风光互补短期调度运行模式对比研究[J].水利学报,2023,54(4):439-450. |
| Wang Y M, Liu S F, Li T T, et al. A comparative study on the short term operation modes of water-wind-solar energy complementary dispatching in yalong river energy base[J]. Shui Li Xue Bao, 2023, 54(4):439-450. | |
| 61 | Ma Y, Huang Y, Wu G, et al. Decentralized monthly generation scheduling of cascade hydropower plants in multiple time scale markets[J]. International Journal of Electrical Power & Energy Systems, 2022, 135: 107420. |
| 62 | Lin Y, Qiao Y, Lu Z. Long-term generation scheduling for renewable-dominant systems concerning limited energy supporting capability of hydrogeneration[J]. IET Generation, Transmission & Distribution, 2022, 16(1): 57-70. |
| 63 | 谭乔凤, 聂状, 闻昕, 等. 大规模风光接入下梯级水电站调度方式研究[J]. 水力发电学报, 2022, 41(9): 44-55. |
| Tan Q F, Nie Z, Wen X, et al. Study on the scheduling method of terraced hydropower station under large-scale wind energy access[J]. Journal of Hydropower Generation, 2022, 41(9): 44-55. | |
| 64 | English J, Niet T, Lyseng B, et al. Flexibility requirements and electricity system planning: Assessing inter-regional coordination with large penetrations of variable renewable supplies[J]. Renewable Energy, 2020, 145: 2770-2782. |
| 65 | Ming B, Liu P, Guo S, et al. Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation[J]. Energy, 2019, 179: 268-279. |
| 66 | 任洪波,张宇晨,吴琼,等.面向韧性提升的综合能源系统规划与运行调度研究综述[J/OL].电力系统自动化, 2024. . |
| Ren H B, Zhang Y C, Wu Q, et al. Research review on planning and operation dispatch of integrated energy system for resilience enhancement [J/OL]. Automation of Electric Power Systems, 2024. . | |
| 67 | 李帆琪,谭青博,赵洱岽,等.沙戈荒能源基地“风-光-火”打捆外送下煤电价值分析模型[J].煤炭经济研究,2024,44(1):14-22. |
| Li F Q, Tan Q B, Zhao E D, et al. Value analysis model of coal power under “wind-solar-coal” bundled transmission of energy base in deserts, gobi, and wastelands [J]. Coal Economic Research, 2024, 44(1): 14-22. | |
| 68 | 林舜江, 冯祥勇, 梁炜焜. 新能源电力系统不确定优化调度方法研究现状及展望[J]. 电力系统自动化, 2024, 48(10): 20-41. |
| Lin S J, Feng X Y, Liang W K. Research status and prospect of uncertain optimal dispatch methods for renewable energy power systems[J]. Automation of Electric Power Systems, 2024, 48(10): 20-41. | |
| 69 | 国家发展改革委. 污泥无害化处理和资源化利用实施方案解读之三 [EB/OL].(2022-10-11) [2024-09-01]. . |
| National Development and Reform Commission. The third interpretation of the Implementation Program for Harmless Treatment and Resource Utilization of Sludge[EB/OL].(2022-10-11)[2024-09-01]. . | |
| 70 | Valera-Medina A, Amer-Hatem F, Azad A K, et al. Review on ammonia as a potential fuel: From synthesis to economics[J]. Energy & Fuels, 2021, 35(9): 6964-7029. |
| [1] | 饶卫振, 常悦, 刘鹏. 新能源汽车动力电池协作回收模式及运营方法研究[J]. 中国管理科学, 2025, 33(9): 325-338. |
| [2] | 田宝峰, 张静文, 李鲁波, 陈俊杰. 存储空间受限下资源约束型项目调度与材料采购集成优化[J]. 中国管理科学, 2025, 33(8): 144-155. |
| [3] | 刘高峰, 李佳静, 王慧敏, 龚艳冰, 陶飞飞. 城市暴雨洪涝灾害链辨识及系统性风险评估[J]. 中国管理科学, 2025, 33(7): 222-231. |
| [4] | 冯章伟, 杜碧升, 于志勇, 牟善栋. 区块链驱动的新能源汽车动力电池回收与溯源技术投入策略研究[J]. 中国管理科学, 2025, 33(4): 313-324. |
| [5] | 熊勇清, 舒楠茜. 新能源汽车负面口碑、干预措施与消费者购买意愿[J]. 中国管理科学, 2025, 33(4): 335-344. |
| [6] | 沈嘉贤, 陈浩智, 张卫国. 基于知识图谱网络特征的中国外汇市场系统性风险测度研究[J]. 中国管理科学, 2025, 33(3): 45-61. |
| [7] | 黎继子, 张国盼, 刘春玲, 孙彪, 王勇. 基于低碳和智能广告定位的新能源汽车企业最优控制决策分析[J]. 中国管理科学, 2025, 33(10): 159-165. |
| [8] | 李树良,杨爽艺,曾波,孟伟,白云. 离散型灰色预测模型的无偏性与自适应性及其应用[J]. 中国管理科学, 2024, 32(8): 149-158. |
| [9] | 张玲,高鹏飞,张琳. 基于剥夺成本的应急疏散与物资调配问题研究[J]. 中国管理科学, 2024, 32(5): 187-195. |
| [10] | 李冬冬,商辰宣,吕宏军,杨晶玉,张岭. “后补贴”时代考虑消费者需求异质性的新能源汽车推广政策研究[J]. 中国管理科学, 2024, 32(4): 141-152. |
| [11] | 陈晓红, 杨柠屹, 周艳菊. 新能源车供应链中社会责任与碳信息公示的策略选择研究[J]. 中国管理科学, 2024, 32(12): 247-256. |
| [12] | 丁军飞, 浦徐进, 曹雨馨, 李静. EPR制度下新能源汽车闭环供应链的回收成本分担机制研究[J]. 中国管理科学, 2024, 32(12): 257-268. |
| [13] | 陶莎, 俞俊英, 陈世伟, 王徽华. 面向复杂海上环境的风电工程多级供应集成优化研究[J]. 中国管理科学, 2024, 32(12): 323-334. |
| [14] | 王丹丹, 乐为, 杨雅雯, 郭本海. 嵌入性风险视角下我国新能源汽车产业技术创新网络演化研究[J]. 中国管理科学, 2024, 32(11): 312-324. |
| [15] | 刘连义,刘思峰,吴利丰. 基于离散时间灰色幂模型的新能源汽车销售量预测[J]. 中国管理科学, 2024, 32(1): 106-114. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||
