中国管理科学 ›› 2025, Vol. 33 ›› Issue (5): 214-224.doi: 10.16381/j.cnki.issn1003-207x.2022.1106cstr: 32146.14/j.cnki.issn1003-207x.2022.1106
收稿日期:
2022-05-18
修回日期:
2023-01-19
出版日期:
2025-05-25
发布日期:
2025-06-04
通讯作者:
方志耕
E-mail:zhigengfang@163.com
基金资助:
Zhigeng Fang1(), Jingru Zhang1, Yuexin Xia1, Ding Chen2, Qiucheng Tao1
Received:
2022-05-18
Revised:
2023-01-19
Online:
2025-05-25
Published:
2025-06-04
Contact:
Zhigeng Fang
E-mail:zhigengfang@163.com
摘要:
针对体系优化存在的体系建模困难、难以量化反映体系效能问题,本文在深入分析武器装备体系结构基础上,通过基于Agent的建模和图示评审技术(graphical evaluation and review technique,GERT)构建具有自学习机制的体系A-GERT网络,实现体系效能优化。其次,基于矩母函数与梅森公式给出了体系作战链/网任务成功概率和作战效能的计算方法和证明,并在深刻剖析体系组成单元贡献的基础上,借助合作博弈的利益公平分配思想,提出了基于Shapley值的体系组成单元期望贡献评估模型。然后,基于马尔可夫过程理论,提出了基于组成单元贡献的A-GERT网络体系效能优化算法。最后结合实例研究,说明了所提模型的可行性和有效性。
中图分类号:
方志耕, 张靖如, 夏悦馨, 陈顶, 陶秋澄. 基于A-GERT网络的武器装备体系效能动态优化模型[J]. 中国管理科学, 2025, 33(5): 214-224.
Zhigeng Fang, Jingru Zhang, Yuexin Xia, Ding Chen, Qiucheng Tao. Effectiveness Dynamic Optimization Model for Weapon and Equipment System of Systems Based on A-GERT Network[J]. Chinese Journal of Management Science, 2025, 33(5): 214-224.
1 | Wang Z, Liu S F, Fang Z G. Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J]. IEEE Systems Journal, 2019,14(3):4188-4196. |
2 | 王波兰, 刘瑞, 高璞. 未来智能跨域弹性防御体系展望及关键技术分析[J]. 南京航空航天大学学报, 2022, 54(5): 836-842. |
Wang B L, Liu R, Gao P. Prospect and key technology analysis of future intelligent cross domain elastic defense system[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2022, 54(5): 836-842. | |
3 | 韩洪涛. 人工智能在核作战体系中的潜在应用及影响浅析[J]. 国防科技, 2022, 43(4): 77-81. |
Han H T. An analysis of the potential application and influence of artificial intelligence in nuclear combat systems[J]. National Defense Technology, 2022, 43(4): 77-81. | |
4 | Cheng Z L, Li F, Zhang Y L. A framework for equipment systems-of-systems effectiveness evaluation using parallel experiments approach[J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 292-300. |
5 | 赵毓, 管公顺, 郭继峰,等. 基于多智能体强化学习的空间机械臂轨迹规划[J]. 航空学报, 2021, 42(1): 266-276. |
Zhao Y, Guan G S, Guo J F, et al. Trajectory planning of space manipulator based on multi-agent reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 266-276. | |
6 | 段勇, 徐心和. 基于多智能体强化学习的多机器人协作策略研究[J]. 系统工程理论与实践, 2014, 34(5): 1305-1310. |
Duan Y, Xu X H. Research on muiti-robot cooperation strategy based on multi-agent reinforcement learning[J]. Systems Engineering-Theory & Practice, 2014, 34(5): 1305-1310. | |
7 | 危小超, 范玉瑶. 基于博弈和多智能体的汽车共享服务联盟协同策略研究[J]. 应用科学学报, 2020, 38(6): 157-167. |
Wei X C, Fan Y Y. Research on cooperative strategy of automobile sharing service alliance based on game theory and multi-agent[J]. Journal of Applied Sciences, 2020, 38(6): 157-167. | |
8 | 饶卫平, 杨任农, 雷晓义,等. 基于多智能体遗传算法的战术航段优化[J]. 传感器与微系统, 2016, 35(3): 40-43, 48. |
Rao W P, Yang R N, Lei X Y, et al. Tactical optimization based on multi-agent genetic algorithm[J]. Transducer and Microsystem Technologies, 2016, 35(3): 40-43, 48. | |
9 | 胡东滨, 胡紫娟, 陈晓红. 基于Agent的报价学习对碳排放权拍卖的影响[J]. 系统工程学报, 2019, 34(2): 28-43. |
Hu D B, Hu Z J, Chen X H. Influence of agent-based bidding learning on carbon emission rights auction[J]. Journal of Systems Engineering, 2019, 34(2): 28-43. | |
10 | Soyez J B, Morvan G, Merzouki R, et al. Multilevel agent-based modeling of system of systems[J]. IEEE Systems Journal, 2017, 11(4): 2084-2095. |
11 | Lanier B, Petnga L. Spatial functions for modeling and analysis of safety-critical systems of systems[C]//Proceedings of 2019 14th Annual Conference System of Systems Engineering (SoSE),Anchorage,May 19-22,IEEE,2019; 352-357. |
12 | Adams C, Giachetti R. Agent modeling to support allocation decisions in mobile cyber-physical systems[C]//Proceedings of 2019 14th Annual Conference System of Systems Engineering (SoSE), Anchorage,May 19-22,IEEE, 2019:57-62. |
13 | 蒋子涵. 基于多智能体系统的共因失效系统故障预测GERT网络模型[D]. 南京: 南京航空航天大学硕士学位论文, 2019. |
Jiang Z H. The GERT network for fault prediction of common cause failure systems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
14 | Boardman J, Sauser B. The meaning of system of systems[C]//Proceedings of 2006 IEEE/SMC International Conference on System of Systems Engineering, Los Angeles, April 24-26,IEEE,2006: 119-123. |
15 | Maier M. Architecting principles for systems of systems[J]. System Engineering, 1998,1(4):267-284. |
16 | Gorod A, Sauser B, Boardman J. System-of-systems engineering management: A review of modern history and a path forward[J]. IEEE Systems Journal, 2008, 2(4): 484-499. |
17 | 揣迎才, 张明清, 唐俊,等. 基于Agent的DDoS协同防御实体行为建模[J]. 计算机工程, 2013, 39(6): 158-161. |
Chuai Y C, Zhang M Q, Tang J, et al. Behavior modeling of DDos collaborative defense entity based on agent[J]. Computer Engineering, 2013, 39(6): 158-161. | |
18 | Iwanaga T, Wang H, Hamilton S H, et al. Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach[J]. Environmental Modelling and Software, 2021, 135:104885. |
19 | Xia L, Zhang M Z, Yang J Y, et al. Modeling of capability relations oriented to the evolution of operational system-of-systems[J]. Journal of System Simulation, 2019,31(6):1039-1047. |
20 | Papageorgiou A, Lvander J, Amadori K, et al. Multidisciplinary and multi-fidelity framework for evaluating system-of-systems capabilities of unmanned aircraft[J]. Journal of Aircraft, 2019, 57(2):317-332. |
21 | Altarabsheh A, Kandil A, Abraham D, et al. System of systems approach for maintaining wastewater system[J]. Journal of Computing in Civil Engineering, 2019, 33(3): 1-16. |
22 | Wang T, Zhou X, Wang W P, et al. An Optimal Searching algorithm for the equipment system-of-systems architecture space with uncertain capabilities[J]. IEEE Access, 2020, 8: 125130-125139. |
23 | Assaad R, Dagli C, El-Adaway I. A system-of-systems model to simulate the complex emergent behavior of vehicle traffic on an urban transportation infrastructure network[J]. Procedia Computer Science, 2020, 168: 139-146. |
24 | 杨圩生, 王钰, 杨洋,等. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
Yang W S, Wang Y, Yang Y, et al. Combat network effectiveness evaluation under different node attack strategies based on operation loop[J]. System Engineering and Electronics, 2021, 43(11): 3220-3228. | |
25 | Pritsker A A B. GERT networks[J]. Production Engineer, 1968, 47(10): 499-506. |
26 | Liu X Q, Fang Z G, Zhang N. A value transfer GERT network model for carbon fiber industry chain based on input-output table[J]. Cluster Computing, 2017, 20(1): 2993-3001. |
27 | Li Z Y, Nie X, Wang B, et al. Analysis of the transmission of project duration and cost impacts based on the GERT network technique[J]. Symmetry, 2019, 11(3):337. |
28 | 刘成刚, 叶雄兵. 战区联合作战指挥信息流评价模型[J]. 军事运筹与系统工程, 2018, 32(1): 31-36. |
Liu C G, Ye X B. Information flow evaluation model of theater joint operation command[J]. Military Operations Research and Assessment, 2018, 32(1): 31-36. | |
29 | Geng S Y, Liu S F, Fang Z G, et al. An agent-based clustering framework for reliable satellite networks[J]. Reliability Engineering & System Safety, 2021, 212: 107630. |
30 | Geng S Y, Liu S F, Fang Z G, et al. An optimal delay routing algorithm considering delay variation in the LEO satellite communication network[J]. Computer Networks, 2020, 173: 107166. |
31 | Nie Y Y, Fang Z G, Gao S. Q-GERT survivability assessment of LEO satellite constellation[J]. Wireless Networks, 2021, 27(1): 249-268. |
32 | 毛昭军, 蔡业泉, 李云芝. 武器装备体系优化方法研究[J]. 装备指挥技术学院学报, 2007, 18(2): 9-13. |
Mao Z J, Cai Y Q, Li Y Z. Preliminary research on optimization of weapon system of systems[J]. Journal of Equipment Academy, 2007, 18(2): 9-13. | |
33 | 黄俊, 武哲, 朱荣昌. 空军作战飞机武器系统优化配置[J]. 北京航空航天大学学报, 1999, 25(5): 546-549. |
Huang J, Wu Z, Zhu R C. Optimized collocation of combat aircraft weapon systems for air force[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 546-549. | |
34 | Luman R R. Upgrading complex systems of systems: A CAIV methodology for warfare area requirements allocation[J]. Military Operations Research, 2000, 5(2): 53-75. |
35 | 李涛, 杨秀月, 郭齐胜. 基于探索性计算实验的信息化武器装备体系优化方法[J]. 装甲兵工程学院学报, 2008,22(1): 1-5. |
Li T, Yang X Y, Guo Q S. Optimization method of information weapon equipment system based on exploratory computational experiments[J]. Journal of Armored Forces, 2008,22(1): 1-5. | |
36 | 蔺美青, 温志诚, 黄诚,等. 一种基于仿真的武器装备体系结构优化新思路[C]//2006系统仿真技术及其应用学术交流会论文集,中国,合肥, 8月1日 ,中国科学技术大学出版社,2006:477-480. |
Lin M Q, Wen Z C, Huang C, et al. A simulation based system of weapon systems structure optimization method[C]//2006 Academic Conference on System Simulation Technology and Its Applications, Hefei,China, August 1 ,Press of University of Science and Technology of China,2006:477-480. | |
37 | 曹颖赛, 刘思峰, 方志耕,等. 系统可靠性退化的单元责任Shapley值分配模型[J]. 机械工程学报, 2017, 53(20): 202-208. |
Cao Y S, Liu S F, Fang Z G, et al. Shapley value allocation model of responsibility during the degradation of system reliability[J]. Journal of Mechanical Engineering, 2017, 53(20): 202-208. | |
38 | 曹颖赛, 刘思峰, 方志耕,等. 考虑共因故障的系统组成单元故障严重性测度模型[J]. 中国机械工程, 2019, 511(7): 5-10. |
Cao Y S, Liu S F, Fang Z G, et al. Measurement model of fault severity for componnents considering common cause faults[J]. China Mechanical Engineering, 2019, 511(7): 5-10. | |
39 | 周永圣, 曲冲冲, 李伯昊,等. 基于Shapley值法的快递自提补贴价格研究[J]. 系统工程理论与实践, 2018, 38(3): 687-695. |
Zhou Y S, Qu C C, Li B H, et al. Study on express subsidy price for consumer self-pick up based on Shapley value[J]. Systems Engineering-Theory & Practice, 2018, 38(3), 687-695. | |
40 | 杨继君, 许维胜, 吴启迪,等. 基于合作博弈的联盟公积金制度在供应链中的应用[J]. 系统工程理论与实践, 2009, 29(3): 63-70. |
Yang J J, Xu W S, Wu Q D, et al. Application of accumulative fund system based on cooperative games in supply chain[J]. Systems Engineering-Theory & Practice, 29(3): 63-70. | |
41 | Le P H, Nguyen T D, Bekta T. Efficient computation of the Shapley value for large-scale linear production games[J].Annals of Operations Research, 2020, 287: 761-781. |
42 | Galindo H, Gallardo J M, Jiménez-Losada A. A real Shapley value for cooperative games with fuzzy characteristic function[J]. Fuzzy Sets and Systems, 2021, 409:1-14. |
43 | Sofiane T, Radjef M, Sais L. A bayesian monte carlo method for computing the Shapley value: Application to weighted voting and bin packing games[J]. Computers & Operations Research, 2021,125:105094. |
44 | Feng W R, Han W B, Pan Z. A reformulated Shapley-like value for cooperative games with interval payoffs[J]. Operations Research Letters, 2020, 48(6): 758-762. |
45 | 胡勋锋, 李登峰. 带层次结构效用可转移合作对策的多步Shapley值[J]. 系统工程理论与实践, 2016, 36(7): 1863-1870. |
Hu X F, Li D F. The multi-step Shapley value of transferable utility cooperative games with a level structure[J]. Systems Engineering-Theory & Practice, 2016, 36(7): 1863-1870. | |
46 | 梁家林, 熊伟. 基于作战环的武器装备体系能力评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1810-1819. |
Liang J L, Xiong W. Capabilities assessment of the weaponry system based on combat ring[J]. Systems Engineering and Electronics, 2019, 41(8): 1810-1819. | |
47 | 房桂祥, 谭跃进, 张木,等. 基于作战环的导弹武器系统体系相对贡献率评估[J]. 系统工程与电子技术, 2020, 42(8): 1734-1739. |
Fang G X, Tan Y J, Zhang M, et al. Evaluation of relative contribution rate of missile weapon system-of-systens based on combat ring[J]. Systems Engineering and Electronics, 2020, 42(8): 1734-1739. | |
48 | 徐建国, 李孟军, 姜江,等. 预警作战体系超网络建模及结构分析[J]. 系统工程与电子技术, 2018, 40(5): 1043-1049. |
Xu J G, Li M J, Jiang J, et al. Supernetwork modeling and structure analyzing for warning combat system[J]. Systems Engineering and Electronics, 2018, 40(5): 1043-1049. | |
49 | 鲁统亮, 陈文豪, 葛冰峰,等. 信息支援下的作战体系多层网络建模[J]. 系统工程与电子技术, 2022, 44(2): 520-528. |
Lu T L, Chen W H, Ge B F, et al. Multi-layer network modeling for combat system-of-systems under information support[J]. Systems Engineering and Electronics, 2022, 44(2): 520-528. | |
50 | 李际超, 杨克巍, 张小可,等. 基于武器装备体系作战网络模型的装备贡献度评估[J]. 复杂系统与复杂性科学, 2016, 13(3): 1-7. |
Li J C, Yang K W, Zhang X K, et al. Equipment contribution degree evaluation method based on combat network of weapon system-of-systems[J]. Complex Systems and Complexity Science, 2016, 13(3): 1-7. | |
51 | 刘克. 实用马尔可夫决策过程[M]. 北京: 清华大学出版社, 2004. |
Liu K. Applied markov decision process[M]. Beijing: Tsinghua University Press, 2004. | |
52 | 奥斯卡·兰格. 经济控制论导论[M]. 北京: 中国社会科学出版社, 1981. |
Oskar R L. Introduction to economic cybernetics[M]. Beijing: China Social Sciences Press, 1981. |
[1] | 方志耕, 耿孙悦, 刘思峰, 高素, 解士昆. 基于地心天际球面坐标的低轨卫星通信网络簇结构协同工作机制设计[J]. 中国管理科学, 2021, 29(2): 195-204. |
[2] | 鄢章华, 刘蕾. 考虑服务水平与动态转移规律的共享单车投放策略研究[J]. 中国管理科学, 2019, 27(9): 195-204. |
[3] | 梁樑, 吴文明, 王志强. 企业集团形成动因的模型分析[J]. 中国管理科学, 2003, (1): 71-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|