1 |
郭薇,薛澜.互联网医疗的现实定位与未来发展[J].探索,2016(6):142-148.
|
|
Guo W, Xue L. The realistic positioning and future development of internet healthcare[J]. Probe,2016(6):142-148.
|
2 |
陈惠芳, 徐卫国. 价值共创视角下互联网医疗服务模式研究[J]. 现代管理科学, 2016(3): 30-32.
|
|
Chen H F, Xu W G. Research on internet medical service model from the perspective of value co-creation[J]. Modern Management Science, 2016(3): 30-32.
|
3 |
Sillence E, Briggs P, Harris P, et al. A framework for understanding trust factors in web-based health advice[J]. International Journal of Human-Computer Studies, 2006, 64(8): 697-713.
|
4 |
Slotin J. What do we know about the value of data[EB/OL].(2018-05-03)[2018-05-03]..
|
5 |
EC, IMF, OECD, and WB UN. Systems of national accounts 2008[M].New York: United Nations,2009.
|
6 |
Akred J, Samani A. Your data is worth more than you think[EB/OL].(2018-12-17)[2018-12-17]..
|
7 |
Li W, Nirei M, Yamana K. Value of data: There’s no such thing as a free lunch in the digital economy[R]. Working Papers, Bureau of Economic Analysis, 2018.
|
8 |
Mawer C.Valuing data is hard[EB/OL]. (2015-11-10)[2015-11-10]..
|
9 |
Elia G, Polimeno G, Solazzo G, et al. A multi-dimension framework for value creation through big data[J]. Industrial Marketing Management, 2020, 90: 617-632.
|
10 |
许宪春, 张美慧.中国数字经济规模测算研究——基于国际比较的视角[J].中国工业经济,2020(5): 23-41.
|
|
Xu X C, Zhang M H. Research on the scale measurement of China’s digital economy: Based on the perspective of international comparison[J]. China Industrial Economics, 2020(5): 23-41.
|
11 |
Pratt J W, Raiffa H, Schlaifer R. Introduction to statistical decision theory[M]. Cambridge, Massachusetts: MIT Press, 1995.
|
12 |
Anscombe F J. Probability and statistics for business decisions: An introduction to managerial economics under uncertainty[J]. Publications of the American Statistical Association, 1959, 54(288):813-814.
|
13 |
Raiffa H, Schlaifer R. Applied statistical decision theory[M]. USA:Wiley, 1961.
|
14 |
Wilson E C F. A practical guide to value of information analysis[J]. Pharmacoeconomics, 2015,33(2): 105-121.
|
15 |
Claxton K. The irrelevance of inference: A decision-making approach to the stochastic evaluation of health care technologies[J]. Journal of Health Economics, 1999, 18(3): 341-364.
|
16 |
Eckermann S, Willan A R. Expected value of information and decision making in HTA[J]. Health Economics, 2007, 16(2): 195-209.
|
17 |
Willan A R. Statistical analysis of cost-effectiveness data[J]. Expert Review of Pharmacoeconomics & Outcomes Research, 2006, 6(3):337-346.
|
18 |
Koh P W, Liang P. Understanding black-box predictions via influence functions[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70, Sydney, Australia, August 06-11 , ML Research Press, 2017: 1885-1894.
|
19 |
Shapley L S. A value for n-person games[M/OL]. Princeton: Princeton University Press, 1953:307-318. .
|
20 |
Gul F. Bargaining foundations of Shapley value[J]. Econometrica: Journal of the Econometric Society, 1989,57(1):81-95.
|
21 |
Ghorbani A, Zou J. Data shapley: Equitable valuation of data for machine learning[C]//Proceedings of International Conference on Machine Learning.PMLR,Long Beach, California, USA, June 9-15 , ML Research Press, 2019: 2242-2251.
|
22 |
Jia R X, Wu F, Sun X H, et al. Scalability vs. utility: Do we have to sacrifice one for the other in data importance quantification?[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, June 20-25, IEEE, 2021: 8239-8247.
|
23 |
Yoon J, Arik S, Pfister T. Data valuation using reinforcement learning[C]//Proceedings of International Conference on Machine Learning. PMLR,Virtual, July 13-18 , ML Research Press, 2020: 10842-10851.
|
24 |
Ghorbani A, Kim M, Zou J. A distributional framework for data valuation[C]//Proceesdings of International Conference on Machine Learning. PMLR,Virtual, July 13-18 , ML Research Press, 2020: 3535-3544.
|
25 |
Jia R, Dao D, Wang B, et al. Towards efficient data valuation based on the shapley value[C]//Proceedings of The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, Naha, Okinawa, Japan, April 16-18 , ML Research Press, 2019: 1167-1176.
|
26 |
Kwon Y, Rivas M A, Zou J. Efficient computation and analysis of distributional shapley values[C]//Proceedings of International Conference on Artificial Intelligence and Statistics.PMLR, Virtual, April 13-15 , ML Research Press, 2021: 793-801.
|
27 |
Wei S, Tong Y, Zhou Z, et al. Efficient and fair data valuation for horizontal federated learning[J]. Federated Learning: Privacy and Incentive, 2020: 139-152.
|
28 |
Shim D, Mai Z, Jeong J, et al. Online class-incremental continual learning with adversarial shapley value[C]//Proceedings of the AAAI Conference on Artificial Intelligence,Virtual, Februar y2-9, Research PressML, 2021, 35(11): 9630-9638.
|
29 |
Agarwal A, Dahleh M, Sarkar T. A marketplace for data: An algorithmic solution[C]//Proceedings of the 2019 ACM Conference on Economics and Computation, Phoenix, AZ, USA, June 24-28,Association for Computing Machinery, 2019: 701-726.
|
30 |
Quinlan J R. Induction of decision trees[J]. Machine learning, 1986(1): 81-106.
|
31 |
Zhu X Q, Wu X D. Class noise vs. attribute noise: A quantitative study[J].The Artificial Intelligence Review, 2004, 22(3): 177-210.
|
32 |
Wu X D. Knowledge acquisition from databases[M]. Norwood, NJ, USA: Ablex Publishing Corp, 1996.
|
33 |
Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)[J]. The Annals of statistics, 2000, 28(2): 337-407.
|
34 |
Freund Y. An adaptive version of the boost by majority algorithm[C]//Proceedings of the Twelfth Annual Conference on Computational learning theory, Santa Cruz, California, USA, Jul y7-9, Association for Computing Machinery, 1999: 102-113.
|
35 |
Sun J, Zhao F, Wang C, et al. Identifying and correcting mislabeled training instances[C]//Proceedings of Future Generation Communication and Networking (FGCN 2007), Jeju Island, Korea, December 6-8, IEEE, 2007, 1: 244-250.
|
36 |
Jeatrakul P, Wong K W, Fung C C. Data cleaning for classification using misclassification analysis[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2010, 14(3): 297-302.
|
37 |
Manwani N, Sastry P S. Noise tolerance under risk minimization[J]. IEEE Transactions on Cybernetics, 2013, 43(3): 1146-1151.
|
38 |
Gaba A, Winkler R L. Implications of errors in survey data: A Bayesian model[J]. Management Science, 1992, 38(7): 913-925.
|
39 |
Kozachenko L F, Leonenko N N. Sample estimate of the entropy of a random vector[J]. Problemy Peredachi Informatsii, 1987, 23(2): 9-16.
|