Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (12): 200-213.doi: 10.16381/j.cnki.issn1003-207x.2023.1836
Previous Articles Next Articles
Xiaomin Xu(
), Shipeng Zheng, Zhiyi Wang, Runkun Yao, Luoyun Guan
Received:2023-11-03
Revised:2024-10-17
Online:2025-12-25
Published:2025-12-25
Contact:
Xiaomin Xu
E-mail:xuxiaomin0701@126.com
CLC Number:
Xiaomin Xu,Shipeng Zheng,Zhiyi Wang, et al. Research on Cost Prediction of Electric Power Equipment Manufacturing Enterprises under Multi Value Chain Collaboration Based on Data Mining[J]. Chinese Journal of Management Science, 2025, 33(12): 200-213.
"
| 影响因素 | -5% | -4% | -3% | -2% | -1% | 1% | 2% | 3% | 4% | 5% |
|---|---|---|---|---|---|---|---|---|---|---|
| 售后费用 | -0.162 | -0.113 | -0.072 | -0.039 | -0.014 | 0.014 | 0.017 | 0.013 | 0.002 | -0.016 |
| 研发支出 | -0.228 | -0.181 | -0.135 | -0.089 | -0.044 | 0.044 | 0.087 | 0.129 | 0.171 | 0.212 |
| 销售量 | -0.089 | -0.063 | -0.040 | -0.022 | -0.007 | 0.010 | 0.014 | 0.013 | 0.009 | 0.002 |
| 销售费用 | -0.605 | -0.476 | -0.350 | -0.230 | -0.113 | 0.109 | 0.214 | 0.315 | 0.413 | 0.507 |
| 生产工资 | 0.163 | 0.131 | 0.099 | 0.066 | 0.033 | -0.034 | -0.068 | -0.102 | -0.137 | -0.173 |
| 管理费用 | 0.238 | 0.196 | 0.153 | 0.106 | 0.056 | -0.053 | -0.113 | -0.177 | -0.245 | -0.317 |
| [1] | 王晓明, 沈焱, 张均强, 等. 基于制造稳定性的电力装备制造企业柔性制造策略研究[J]. 中国软科学, 2020(8): 122-130. |
| Wang X M, Shen Y, Zhang J Q, et al. Research on flexible manufacturing strategy for electric power equipment manufacturing enterprises based on manufacturing stability[J]. China Soft Science, 2020(8): 122-130. | |
| [2] | 潘蓉蓉, 罗建强, 杨子超. 数字技术赋能制造企业服务化转型: 理论分析与展望[J]. 系统工程理论与实践, 2023, 43(11): 3110-3128. |
| Pan R R, Luo J Q, Yang Z C. Digital technology empowers servitization transformation of manufacturing enterprises: Theoretical analysis and prospect[J]. Systems Engineering-Theory & Practice, 2023, 43(11): 3110-3128. | |
| [3] | 张玺, 宋洁, 侍乐媛, 等. 新一代信息技术环境下的高端装备数字化制造协同[J]. 管理世界, 2023, 39(1): 190-204. |
| Zhang X, Song J, Shi L Y, et al. Collaboration for digital manufacturing of high-end equipment in the era of new-generation information technology environment[J]. Journal of Management World, 2023, 39(1): 190-204. | |
| [4] | 李梅芳, 刘雨菁. 数字创新生态系统构成因素对高端装备制造智能化发展的影响分析[J]. 科研管理, 2025, 46(3): 28-37. |
| Li M F, Liu Y J. An analysis of the impact of the constituent factors of the digital innovation ecosystem on the intelligent development of high-end equipment manufacturing[J]. Science Research Management, 2025, 46(3): 28-37. | |
| [5] | 杨瑾, 同智文. 颠覆性技术创新何以驱动装备制造企业智能化转型?[J]. 技术经济, 2024, 43(5): 82-94. |
| Yang J, Tong Z W. How can disruptive technology innovation drive the intelligent transformation of equipment manufacturing enterprises?[J]. Journal of Technology Economics, 2024, 43(5): 82-94. | |
| [6] | 卢建霖, 蒋天颖. 制造业智能化对企业关键核心技术能力的影响及机制研究[J]. 科研管理, 2024, 45(11): 109-118. |
| Lu J L, Jiang T Y. Research on the impact and mechanism of manufacturing intelligentization on the key core technology capabilities of the manufacturing industry[J]. Science Research Management,2024,45(11): 109-118. | |
| [7] | 工业和信息化部.工业和信息化部关于印发电力装备行业稳增长工作方案(2023-2024年)的通知:工信部重装〔2023〕[EB/OL].(2023-08-09)[2025-06-05].. |
| Ministry of Industry and Information Technology. Notice of the ministry of industry and information technology on issuing the work plan for stable growth in the electric power equipment industry (2023-2024): Ministry of industry and information technology heavy equipment[2023][EB/OL].(2023-08-09)[2025-06-05].. | |
| [8] | Chien C H, Chen P Y, Trappey A J C, et al. Intelligent supply chain management modules enabling advanced manufacturing for the electric-mechanical equipment industry[J]. Complexity, 2022, 2022(1): 8221706. |
| [9] | 裴军, 周娅, 彭张林, 等. 高端装备智能制造创新运作: 从平台型企业到平台型供应链[J]. 管理世界, 2023, 39(1): 226-240. |
| Pei J, Zhou Y, Peng Z L, et al. The innovative operation of high-end equipment smart manufacturing: From platform-based enterprise to platform-based supply chain[J]. Journal of Management World, 2023, 39(1): 226-240. | |
| [10] | Miao Z. Digital economy value chain: Concept, model structure, and mechanism[J]. Applied Economics, 2021, 53(37): 4342-4357. |
| [11] | 张强, 赵爽耀, 蔡正阳. 高端装备智能制造价值链的生产自组织与协同管理: 设计制造一体化协同研发实践[J]. 管理世界, 2023, 39(3): 127-140. |
| Zhang Q, Zhao S Y, Cai Z Y. Production self-organization and collaborative management of intelligent manufacturing value chain of high-end equipment: Design and manufacturing integration collaborative R & D practice[J]. Journal of Management World, 2023, 39(3): 127-140. | |
| [12] | 甄美荣, 刘蕊. 数字赋能制造企业技术创新的实现机制——基于数据生命周期理论的研究[J]. 技术经济, 2024, 43(3): 64-76. |
| Zhen M R, Liu R. A study on the digital empowerment mechanism to technological innovation of manufacturing enterprises: Based on the data life cycle theory[J]. Journal of Technology Economics, 2024, 43(3): 64-76. | |
| [13] | 赵晶, 程栖云, 尹曼青. 融通创新如何驱动传统制造业企业高端化转型——基于价值链重构视角的案例研究[J]. 南开管理评论, 2024, 27(9): 139-151. |
| Zhao J, Cheng X Y, Yin M Q. How does co-innovation drive the high-end transformation in traditional manufacturing companies? a longitudinal case study from the perspective of value chain reconstruction[J].Nankai Business Review, 2024, 27(9): 139-151. | |
| [14] | 于翔, 牛彪, 苑泽明. 价值链视角下“人数”协同对企业高质量发展的影响研究[J]. 科研管理, 2025, 46(3): 60-68. |
| Yu X, Niu B, Yuan Z M. A study on the impact of “people and data” coordination on the high-quality development of enterprises from the perspective of value chain[J].Science Research Management,2025, 46(3): 60-68. | |
| [15] | 马静, 吴利华. 价值链视角下传统制造企业数字化转型影响因素研究[J].科研管理,2025,46(7): 174-184. |
| Ma J, Wu L H. Research on the influencing factors of digital transformation in traditional manufacturing enterprises from the perspective of value chain[J]. Science Research Management, 2025, 46(7): 174-184. | |
| [16] | Zhang X, Yuan J, Dan B, et al. The evolution mechanism of the multi-value chain network ecosystem supported by the third-party platform[J]. Journal of Industrial and Management Optimization,2022,18(6): 4071. |
| [17] | 胡炳涛, 冯毅雄, 密尚华, 等. 面向核电装备的全生命周期价值链协同模式研究[J]. 机械工程学报, 2022, 58(13): 213-227. |
| Hu B T, Feng Y X, Mi S H, et al. Novel collaborative mode of lifecycle value chain for nuclear power equipment[J]. Journal of Mechanical Engineering, 2022, 58(13): 213-227. | |
| [18] | 韩洁平, 赵丹, 杨晓龙, 等. 基于语义的制造企业多价值链协同数据空间数字资源聚合识别方法研究[J]. 中国管理科学, 2023, 31(11): 332-340. |
| Han J P, Zhao D, Yang X L, et al. Research on digital resource aggregation and recognition method of multi value chain collaborative data space of manufacturing enterprises based on semantics[J]. Chinese Journal of Management Science, 2023, 31(11): 332-340. | |
| [19] | 李明钰, 李金超. 多价值链协同模拟空间数字高程统计的制造生产风险建模[J]. 科学技术与工程, 2023, 23(23): 9958-9964. |
| Li M Y, Li J C. Collaborative multi-value chain simulation of spatial digital elevation statistics for manufacturing production risk modelling research[J]. Science Technology and Engineering, 2023, 23(23): 9958-9964. | |
| [20] | 张键, 谢庭玉, 彭鹏, 等. 制造业多价值链协同数据空间产品知识属性与销量预测关联性研究[J]. 中国管理科学, 2023, 31(11): 341-348. |
| Zhang J, Xie T Y, Peng P, et al. Research on the correlation between product knowledge attribute and sales forecast in multi-value chain collaborative data space of manufacturing industry[J]. Chinese Journal of Management Science, 2023, 31(11): 341-348. | |
| [21] | 吴庚奇, 牛东晓, 耿世平, 等. 多价值链视角下基于深度学习算法的制造企业产品需求预测[J]. 科学技术与工程, 2021, 21(31): 13413-13420. |
| Wu G Q, Niu D X, Geng S P, et al. Product demand forecasting of manufacturing enterprises based on deep learning algorithm from the perspective of multi-value chains[J]. Science Technology and Engineering, 2021, 21(31): 13413-13420. | |
| [22] | Mahmoodzadeh A, Nejati H R, Mohammadi M, et al. Developing six hybrid machine learning models based on Gaussian process regression and meta-heuristic optimization algorithms for prediction of duration and cost of road tunnels construction[J]. Tunnelling and Underground Space Technology, 2022, 130: 104759. |
| [23] | Peng H, Wu H, Wang J. Research on the prediction of the water demand of construction engineering based on the BP neural network[J]. Advances in Civil Engineering, 2020, 2020(1): 8868817. |
| [24] | Gao T, Ji Z, Niu D, et al. Research on product sales forecasting based on multi-value chain collaborative data management system in manufacturing industry[C]//Proceedings of 2022 IEEE International Conference on E-Business Engineering (ICEBE), Bournemouth, United Kingdom, October 14-16, IEEE, 2023: 86-93. |
| [25] | 熊志伟, 熊元新, 熊一. 基于量子粒子群优化最小二乘支持向量机的变电站全寿命周期成本预测研究[J]. 电测与仪表, 2021, 58(6): 76-81. |
| Xiong Z W, Xiong Y X, Xiong Y. Life cycle cost prediction of substation based on QPPO optimized LS-SVM[J]. Electrical Measurement & Instrumentation, 2021, 58(6): 76-81. | |
| [26] | 章丽萍, 程圆, 王郁聪, 等.基于BP神经网络的科创板企业研发成本预测[J].会计之友,2023(8): 74-81. |
| Zhang L P, Cheng Y, Wang Y C, et al. Research and development cost prediction of science and technology innovation board enterprises based on bp neural network[J]. Friends of Accounting, 2023(8): 74-81. | |
| [27] | Car-Pusic D, Petruseva S, Zileska Pancovska V, et al. Neural network-based model for predicting preliminary construction cost as part of cost predicting system[J]. Advances in Civil Engineering, 2020, 2020(1): 8886170. |
| [28] | 徐进, 赵慧祺, 张泽慧, 等. 基于特征差异增强的工程装备知识跨项目多源域迁移学习研究[J]. 系统工程理论与实践, 2024, 44(3): 1097-1113. |
| Xu J, Zhao H Q, Zhang Z H, et al. A multi-source transfer learning study based on feature difference enhancement for inter-project knowledge transfer of construction equipment[J]. Systems Engineering-Theory & Practice, 2024, 44(3): 1097-1113. | |
| [29] | Ren F, Liu W. LSSA-BP-based cost forecasting for onshore wind power[J]. Energy Reports, 2023, 9: 362-370. |
| [30] | Kim S, Choi C Y, Shahandashti M, et al. Improving accuracy in predicting city-level construction cost indices by combining linear ARIMA and nonlinear ANNs[J]. Journal of Management in Engineering, 2022, 38(2): 04021093. |
| [31] | De Marco A, Ottaviani F M, Bolognesi F. Time series-based project cost forecasting framework[J]. Procedia Computer Science, 2024, 239: 105-113. |
| [32] | Habib O, Abouhamad M, Bayoumi A. Ensemble learning framework for forecasting construction costs[J]. Automation in Construction, 2025, 170: 105903. |
| [33] | 刘倩, 李从东, 喻寅昀, 等. 内部价值链视角下复杂产品变更成本预测模型[J]. 计算机集成制造系统, 2024, 30(6): 2186-2198. |
| Liu Q, Li C D, Yu Y Y, et al. Prediction model of change cost in complex product from the perspective of internal valve chain[J]. Computer Integrated Manufacturing Systems, 2024, 30(6): 2186-2198. | |
| [34] | Yun S. Performance analysis of construction cost prediction using neural network for multioutput regression[J]. Applied Sciences, 2022, 12(19):9592. |
| [35] | Kim S, Abediniangerabi B, Shahandashti M. Pipeline construction cost forecasting using multivariate time series methods[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12(3): 04021026. |
| [36] | Tang A, Zhou H, Han T, et al. A chaos sparrow search algorithm with logarithmic spiral and adaptive step for engineering problems[J]. CMES - Computer Modeling in Engineering and Sciences, 2022, 130(1): 331-364. |
| [37] | 何桢, 张静静, 何曙光. 基于支持向量机的无参时变过程控制方法研究[J]. 系统工程学报, 2023, 38(3): 419-432. |
| He Z, Zhang J J, He S G. Research on adaptive support vector machine for time-varying process control[J]. Journal of Systems Engineering, 2023, 38(3): 419-432. | |
| [38] | 李明钰, 牛东晓, 纪正森, 等. 面向数据空间体系构建的电力制造业多价值链经营风险识别与管控研究[J]. 中国管理科学, 2023, 31(11): 349-360. |
| Li M Y, Niu D X, Ji Z S, et al. Research on multi-value chain management risk identification and control of electric power manufacturing industry oriented to the construction of data space system[J]. Chinese Journal of Management Science, 2023, 31(11): 349-360. | |
| [39] | Suh E S, Sinha K, Ahn J. Multi-attribute optimization-based system decomposition considering several value chain stakeholder perspectives[J]. Research in Engineering Design,2020,31(4):411-428. |
| [40] | 牛东晓, 斯琴卓娅, 王董禹, 等. 基于数据挖掘的电力装备企业多价值链协同数据预处理方法研究及应用[J]. 中国管理科学, 2023, 31(11): 321-331. |
| Niu D X, Siqin Z Y, Wang D Y, et al. Method and application of multi-value chain collaborative data mining in power equipment enterprises based on deep learning[J]. Chinese Journal of Management Science, 2023, 31(11): 321-331. | |
| [41] | Wu L, Liu H, Bao Y. Outside-in thinking, value chain collaboration and business model innovation in manufacturing firms[J]. Journal of Business & Industrial Marketing, 2022, 37(9): 1745-1761. |
| [42] | 赵靖英, 吴晶晶, 张雪辉, 等. 基于萤火虫扰动麻雀搜索算法-极限学习机的光伏阵列故障诊断方法研究[J]. 电网技术, 2023, 47(4): 1612-1625. |
| Zhao J Y, Wu J J, Zhang X H, et al. Fault diagnosis of photovoltaic arrays based on sparrow search algorithm with firefly perturbation-extreme learning machine[J]. Power System Technology, 2023, 47(4): 1612-1625. | |
| [43] | Yue Y, Cao L, Lu D, et al. Review and empirical analysis of sparrow search algorithm[J]. Artificial Intelligence Review, 2023, 56(10): 10867-10919. |
| [44] | Ma Y, Mi J, Yang X, et al. Prediction model and sensitivity analysis of ultimate drift ratio for rectangular reinforced concrete columns failed in flexural-shear based on BP-Garson algorithm[J]. Structures, 2024, 60: 105808. |
| [1] | Jieping Han,Meiling Gu,Xiaolong Yang,Dan Zhao,Huanfen Zhang. Research on Multi-Value Chain Collaborative Innovation Management for Manufacturing Servitization Oriented to the Construction of Data Space System [J]. Chinese Journal of Management Science, 2024, 32(1): 299-308. |
| [2] | LUO Jian, TANG Jia-fu, YU Qing-ya, WU Zhi-qiao. The Division of O2O Takeaway Business Zone and Discovery of Customer Demand Distribution Law [J]. Chinese Journal of Management Science, 2023, 31(3): 58-68. |
| [3] | Dong-xiao NIU,Zhuo-ya SIQIN,Dong-yu WANG,Xiao-min XU,Huan-fen ZHANG. Method and Application of Multi-value Chain Collaborative Data Mining in Power Equipment Enterprises Based on Deep Learning [J]. Chinese Journal of Management Science, 2023, 31(11): 321-331. |
| [4] | JIANG Hui, MA Chao-qun, XU Xu-qing, LAN Qiu-jun. An EM-similar Imputation Algorithm for Multivariable Data Missing and its Application in Credit Scoring [J]. Chinese Journal of Management Science, 2019, 27(3): 11-19. |
| [5] | ZHU Zhi-guo. Discovery of E-Commerce Users’ Interest Navigation Patterns Based on Hidden Markov Chains Model [J]. Chinese Journal of Management Science, 2014, 22(4): 67-73. |
| [6] | ZHAO Yu, HUANG Si-ming, CHEN Rui. Research on Feature Selection Methods of Data Classification [J]. Chinese Journal of Management Science, 2013, 21(6): 38-46. |
| [7] | ZHU Bang-zhu, ZHANG Qiu-ju, ZOU Hao-fei, WEI Yi-ming. E-Business Customer Churn Prediction Based on Integration of Objective System Analysis and Group Method of Data Handling Network [J]. Chinese Journal of Management Science, 2011, 19(5): 64-70. |
| [8] | LIU Yao, NI Tao. Research on the Method for Estimating Industrywide Tax Burden Distribution Based on Entropy [J]. Chinese Journal of Management Science, 2009, 17(1): 107-112. |
| [9] | LAN Qiu-jun, MA Chao-qun, GAN Guo-jun, WU Jian-hong. Are Stock Markets of China Weak-Form Efficient?——A Research from Data Mining [J]. Chinese Journal of Management Science, 2005, (4): 17-23. |
| [10] | ZHANG De-ming, CAO Xiu-ying, ZHANG Guo-chun. Demonstrative Study on Fabricated Governance Mechanism of China Listed Companies [J]. Chinese Journal of Management Science, 2004, (4): 137-143. |
| [11] | ZHANG Zhe, CHANG Gui-ran, HUANG Xiao-yuan. The Application of Data Mining Technology in CRM [J]. Chinese Journal of Management Science, 2003, (1): 53-59. |
| [12] | YANG Shan-lin, ZHU Wei-dong, LIU Ye-zheng. A Framework for Enterprise Intelligent Decision Support Systems Based on Internet [J]. Chinese Journal of Management Science, 2002, (6): 76-80. |
| [13] | LIU Yao . Research on DSS of Enterprise Based on Web and Data Warehouse [J]. Chinese Journal of Management Science, 2001, (4): 30-35. |
| [14] | FAN Qun, DA Qing-li. A New Decision Support System Based on Virtual Database [J]. Chinese Journal of Management Science, 2001, (3): 62-67. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||