Chinese Journal of Management Science ›› 2024, Vol. 32 ›› Issue (1): 146-157.doi: 10.16381/j.cnki.issn1003-207x.2021.0203
Previous Articles Next Articles
Xinyue Zhang1,2,Peng Jin1,2(
),Xiaoxuan Hu1,2,Moning Zhu1,2
Received:2021-01-28
Revised:2021-11-20
Online:2024-01-25
Published:2024-02-08
Contact:
Peng Jin
E-mail:jinpeng@hfut.edu.cn
CLC Number:
Xinyue Zhang,Peng Jin,Xiaoxuan Hu, et al. Research on the Time-dependent Multi-depot Open Vehicle Routing Problem with Time Windows[J]. Chinese Journal of Management Science, 2024, 32(1): 146-157.
"
| 算例 | n | Best known solution | HGA best solution | |||||
|---|---|---|---|---|---|---|---|---|
| vehicles | Bbest | Btime | vehicles | Rbest | Gap(%) | CPUtime | ||
| C101 | 25 | 3 | 191.3 | 0.56 | 3 | 191.81 | 0.27 | 0.28 |
| C102 | 25 | 3 | 190.3 | 1.94 | 3 | 190.74 | 0.23 | 0.19 |
| C103 | 25 | 3 | 190.3 | 4.03 | 3 | 190.74 | 0.23 | 0.18 |
| C104 | 25 | 3 | 186.9 | 8.45 | 3 | 186.90 | 0.00 | 0.65 |
| C105 | 25 | 3 | 191.3 | 0.64 | 3 | 191.81 | 0.27 | 0.33 |
| C106 | 25 | 3 | 191.3 | 0.62 | 3 | 191.81 | 0.27 | 0.63 |
| C107 | 25 | 3 | 191.3 | 0.61 | 3 | 191.81 | 0.27 | 0.39 |
| C108 | 25 | 3 | 191.3 | 0.64 | 3 | 191.81 | 0.27 | 0.23 |
| C109 | 25 | 3 | 191.3 | 0.87 | 3 | 191.81 | 0.27 | 0.26 |
| C101 | 50 | 5 | 362.4 | 2.48 | 5 | 363.25 | 0.23 | 1.85 |
| C102 | 50 | 5 | 361.4 | 13.99 | 5 | 361.40 | 0.00 | 2.94 |
| C103 | 50 | 5 | 361.4 | 33.78 | 5 | 361.49 | 0.02 | 3.11 |
| C104 | 50 | 5 | 358 | 884.46 | 5 | 363.18 | 1.45 | 5.81 |
| C105 | 50 | 5 | 362.4 | 5.83 | 5 | 363.25 | 0.23 | 9.89 |
| C106 | 50 | 5 | 362.4 | 1.25 | 5 | 363.25 | 0.23 | 70.39 |
| C107 | 50 | 5 | 362.4 | 3.85 | 5 | 363.25 | 0.23 | 13.27 |
| C108 | 50 | 5 | 362.4 | 8.21 | 5 | 363.25 | 0.23 | 3.93 |
| C109 | 50 | 5 | 362.4 | 5.34 | 5 | 363.25 | 0.23 | 1.38 |
| C101 | 100 | 10 | 827.3 | 5.86 | 10 | 828.94 | 0.20 | 9.67 |
| C102 | 100 | 10 | 827.3 | 111.35 | 10 | 841.36 | 1.70 | 11.45 |
| C103 | 100 | 10 | 826.3 | 679.69 | 10 | 838.03 | 1.42 | 7.17 |
| C104 | 100 | 10 | 822.9 | 1216.04 | 10 | 824.46 | 0.19 | 12.22 |
| C105 | 100 | 10 | 827.3 | 33.21 | 10 | 827.72 | 0.05 | 11.33 |
| C106 | 100 | 10 | 827.3 | 23.7 | 10 | 827.45 | 0.02 | 11.45 |
| C107 | 100 | 10 | 827.3 | 36.92 | 10 | 828.94 | 0.20 | 12.21 |
| C108 | 100 | 10 | 827.3 | 42.2 | 10 | 828.92 | 0.20 | 10.95 |
| C109 | 100 | 10 | 827.3 | 72.9 | 10 | 831.56 | 0.51 | 15.28 |
"
| 算例 | n | Best known solution | HGA best solution | ||||
|---|---|---|---|---|---|---|---|
| vehicles | Tbest | vehicles | Tmin | absolute value | CPUavg | ||
| C101 | 25 | 3 | 91.84 | 3 | 79.51 | 12.33 | 0.33 |
| C102 | 25 | 3 | 91.36 | 3 | 74.64 | 16.72 | 0.29 |
| C103 | 25 | 3 | 91.36 | 3 | 73.12 | 18.24 | 0.28 |
| C104 | 25 | 3 | 89.72 | 3 | 79.34 | 10.38 | 3.37 |
| C105 | 25 | 3 | 91.84 | 3 | 80.35 | 11.49 | 1.17 |
| C106 | 25 | 3 | 91.84 | 3 | 78.89 | 12.95 | 0.44 |
| C107 | 25 | 3 | 91.84 | 3 | 84.07 | 7.77 | 0.26 |
| C108 | 25 | 3 | 91.84 | 3 | 83.33 | 8.51 | 0.48 |
| C109 | 25 | 3 | 91.84 | 3 | 77.99 | 13.85 | 0.50 |
| C101 | 50 | 5 | 173.97 | 5 | 149.91 | 24.06 | 1.96 |
| C102 | 50 | 5 | 173.49 | 5 | 154.92 | 18.57 | 5.99 |
| C103 | 50 | 5 | 173.49 | 5 | 162.81 | 10.68 | 3.12 |
| C104 | 50 | 5 | 171.86 | 5 | 159.45 | 12.41 | 2.54 |
| C105 | 50 | 5 | 173.97 | 5 | 150.01 | 23.96 | 3.88 |
| C106 | 50 | 5 | 173.97 | 5 | 149.50 | 24.47 | 1.29 |
| C107 | 50 | 5 | 173.97 | 5 | 166.07 | 7.90 | 1.80 |
| C108 | 50 | 5 | 173.97 | 5 | 145.38 | 28.59 | 1.15 |
| C109 | 50 | 5 | 173.97 | 5 | 152.88 | 21.09 | 1.63 |
| C101 | 100 | 10 | 397.16 | 10 | 383.18 | 13.98 | 3.87 |
| C102 | 100 | 10 | 397.15 | 10 | 374.67 | 22.48 | 9.89 |
| C103 | 100 | 10 | 396.68 | 10 | 383.23 | 13.45 | 5.99 |
| C104 | 100 | 10 | 395.04 | 10 | 353.80 | 41.24 | 4.43 |
| C105 | 100 | 10 | 397.16 | 10 | 372.98 | 24.18 | 7.27 |
| C106 | 100 | 10 | 397.16 | 10 | 357.47 | 39.69 | 8.15 |
| C107 | 100 | 10 | 397.16 | 10 | 374.80 | 22.36 | 6.25 |
| C108 | 100 | 10 | 397.16 | 10 | 371.05 | 26.11 | 6.51 |
| C109 | 100 | 10 | 397.16 | 10 | 355.95 | 41.21 | 8.22 |
"
Travel time distribution | Best known solution | HGA best solution | Gap1 | Gap2 | ||||
|---|---|---|---|---|---|---|---|---|
| vehicles | Tavg | Davg | vehicles | T’avg | D’avg | |||
| TD1a | 10.00 | 729 | 879 | 10.00 | 650 | 892 | 12.13 | -1.46 |
| TD2a | 10.00 | 644 | 864 | 10.00 | 562 | 884 | 14.53 | -2.26 |
| TD3a | 10.00 | 608 | 880 | 10.00 | 513 | 882 | 18.46 | -0.23 |
| TD1b | 10.00 | 732 | 892 | 10.00 | 650 | 892 | 12.59 | 0.00 |
| TD2b | 10.00 | 650 | 883 | 10.00 | 562 | 884 | 15.6 | -0.11 |
| TD3b | 10.00 | 584 | 866 | 10.00 | 513 | 882 | 13.79 | -1.81 |
| TD1c | 10.00 | 697 | 865 | 10.00 | 650 | 892 | 7.211 | -3.03 |
| TD2c | 10.00 | 618 | 863 | 10.00 | 562 | 884 | 9.91 | -2.38 |
| TD3c | 10.00 | 565 | 862 | 10.00 | 513 | 882 | 10.08 | -2.27 |
| TD1d | 10.00 | 731 | 872 | 10.00 | 650 | 892 | 12.44 | -2.24 |
| TD2d | 10.00 | 652 | 856 | 10.00 | 562 | 884 | 15.96 | -3.17 |
| TD3d | 10.00 | 612 | 867 | 10.00 | 513 | 882 | 19.24 | -1.70 |
"
| 算例 | Basic GA | HGA | Gap | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| vehicles | Sbasic | CPUtime | vehicles | Smax | Savg | Smin | Gap1 | Gap2 | CPUavg | B~H(%) | |
| C3-101 | 6 | 101.14 | 0.32 | 3 | 86.33 | 84.85 | 82.45 | 1.74 | -2.83 | 0.34 | 22.67 |
| C3-102 | 5 | 117.42 | 0.31 | 5 | 107.78 | 106.83 | 105.68 | 0.89 | -1.08 | 0.32 | 11.11 |
| C3-103 | 5 | 113.3 | 0.30 | 5 | 108.57 | 105.96 | 101.39 | 2.46 | -4.31 | 0.32 | 11.75 |
| C3-104 | 6 | 108.63 | 0.31 | 4 | 94.04 | 93.33 | 92.56 | 0.76 | -0.83 | 0.35 | 17.36 |
| C3-105 | 4 | 126.36 | 0.32 | 6 | 121.61 | 119.26 | 114.89 | 1.97 | -3.66 | 0.33 | 9.97 |
| C3-106 | 6 | 121.31 | 0.31 | 5 | 104.84 | 103.96 | 102.9 | 0.85 | -1.02 | 0.32 | 17.89 |
| C3-107 | 4 | 109.47 | 0.31 | 5 | 114.28 | 111.86 | 106.9 | 2.16 | -4.44 | 0.35 | 2.41 |
| C3-108 | 6 | 120.83 | 0.31 | 6 | 117.61 | 114.71 | 110.11 | 2.53 | -4.01 | 0.35 | 9.73 |
| C3-109 | 5 | 117.14 | 0.42 | 4 | 106.17 | 102.72 | 98.24 | 3.35 | -4.37 | 0.47 | 19.24 |
| C5-101 | 10 | 238.95 | 2.05 | 8 | 211.12 | 207.24 | 201.28 | 1.87 | -2.88 | 2.28 | 18.72 |
| C5-102 | 10 | 280.61 | 6.05 | 10 | 254.4 | 250.16 | 245.91 | 1.7 | -1.7 | 6.75 | 14.11 |
| C5-103 | 10 | 280.55 | 3.11 | 9 | 242.82 | 237.73 | 235.73 | 2.14 | -0.84 | 3.71 | 19.01 |
| C5-104 | 10 | 250.1 | 1.04 | 9 | 223.81 | 220.99 | 216.31 | 1.28 | -2.12 | 1.25 | 15.62 |
| C5-105 | 9 | 218.99 | 2.10 | 8 | 201.04 | 197.82 | 191.84 | 1.63 | -3.02 | 2.71 | 14.15 |
| C5-106 | 10 | 237.57 | 10.51 | 9 | 210.94 | 207.46 | 202.55 | 1.68 | -2.37 | 11.21 | 17.29 |
| C5-107 | 10 | 256.02 | 2.19 | 10 | 234.79 | 231.13 | 225.09 | 1.58 | -2.61 | 2.14 | 13.74 |
| C5-108 | 9 | 236.7 | 1.86 | 7 | 196.38 | 193.45 | 188.59 | 1.51 | -2.51 | 2.06 | 25.51 |
| C5-109 | 10 | 249.41 | 1.38 | 10 | 233.33 | 230.58 | 222.08 | 1.19 | -3.69 | 1.68 | 12.31 |
| C7-101 | 17 | 478.8 | 60.18 | 17 | 449.72 | 449.15 | 448.8 | 0.13 | -0.08 | 62.18 | 6.68 |
| C7-102 | 17 | 580.43 | 50.28 | 17 | 567.52 | 564.21 | 560.43 | 0.59 | -0.67 | 51.48 | 3.57 |
| C7-103 | 18 | 595.45 | 20.10 | 18 | 574.71 | 570.08 | 575.45 | 0.81 | 0.94 | 21.3 | 3.48 |
| C7-104 | 13 | 529.35 | 7.23 | 18 | 520.82 | 517.26 | 512.41 | 0.69 | -0.94 | 7.83 | 3.30 |
| C7-105 | 10 | 399.12 | 74.51 | 11 | 388.34 | 388.34 | 388.34 | 0.00 | 0.00 | 75.51 | 2.78 |
| C7-106 | 15 | 534.71 | 66.00 | 20 | 526.49 | 521.19 | 515.44 | 1.02 | -1.1 | 66.66 | 3.74 |
| C7-107 | 10 | 428.9 | 79.95 | 12 | 416.26 | 414.36 | 413.42 | 0.46 | -0.23 | 74.56 | 3.74 |
| C7-108 | 10 | 391.28 | 58.13 | 10 | 380.75 | 376.53 | 373.22 | 1.12 | -0.88 | 60.13 | 4.84 |
| C7-109 | 10 | 473.55 | 47.64 | 11 | 465.13 | 463.4 | 461.14 | 0.37 | -0.49 | 46.28 | 2.69 |
| Avg | 1.35 | -1.92 | 11.39 | ||||||||
"
| 算例 | TDMDVRPTW | TDMDOVRPTW | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| vehicles | Rbest | Cbest | CPUtime | vehicles | R'best | C'best | CPUtime | Gap1 | Gap2 | |
| C3-101 | 3 | 60.05 | 90.05 | 0.33 | 3 | 52.45 | 82.45 | 0.34 | 14.49 | 9.22 |
| C3-102 | 5 | 69.84 | 119.84 | 0.28 | 5 | 55.68 | 105.68 | 0.32 | 25.43 | 13.40 |
| C3-103 | 5 | 61.39 | 111.39 | 0.29 | 5 | 51.39 | 101.39 | 0.32 | 19.46 | 9.86 |
| C3-104 | 4 | 59.32 | 99.32 | 0.23 | 4 | 52.56 | 92.56 | 0.35 | 12.86 | 7.30 |
| C3-105 | 6 | 58.25 | 118.25 | 0.74 | 6 | 54.89 | 114.89 | 0.33 | 6.11 | 2.92 |
| C3-106 | 6 | 56.63 | 116.63 | 0.76 | 5 | 52.90 | 102.90 | 0.32 | 7.05 | 13.34 |
| C3-107 | 5 | 64.02 | 114.02 | 0.76 | 5 | 56.90 | 106.90 | 0.35 | 12.52 | 6.66 |
| C3-108 | 6 | 51.14 | 111.14 | 0.43 | 6 | 50.11 | 110.11 | 0.35 | 2.05 | 0.93 |
| C3-109 | 4 | 60.59 | 100.59 | 0.48 | 4 | 58.24 | 98.24 | 0.47 | 4.04 | 2.39 |
| C5-101 | 8 | 133.67 | 213.67 | 2.92 | 8 | 121.28 | 201.28 | 2.28 | 10.22 | 6.16 |
| C5-102 | 10 | 159.06 | 259.06 | 1.61 | 10 | 145.91 | 245.91 | 6.75 | 9.01 | 5.35 |
| C5-103 | 10 | 150.06 | 250.06 | 1.16 | 9 | 145.73 | 235.73 | 3.71 | 2.97 | 6.08 |
| C5-104 | 10 | 137.23 | 237.23 | 0.78 | 9 | 126.31 | 216.31 | 1.25 | 8.65 | 9.67 |
| C5-105 | 8 | 115.03 | 195.03 | 3.42 | 8 | 111.84 | 191.84 | 2.71 | 2.85 | 1.66 |
| C5-106 | 9 | 118.31 | 208.31 | 4.56 | 9 | 112.55 | 202.55 | 11.21 | 5.12 | 2.84 |
| C5-107 | 10 | 140.64 | 240.67 | 4.29 | 10 | 125.09 | 225.09 | 2.14 | 12.43 | 6.92 |
| C5-108 | 8 | 128.38 | 208.38 | 3.02 | 7 | 118.59 | 188.59 | 2.06 | 8.25 | 10.49 |
| C5-109 | 10 | 139.54 | 239.54 | 2.16 | 10 | 122.08 | 222.08 | 1.68 | 14.30 | 7.86 |
| C7-101 | 17 | 291.01 | 461.01 | 28.21 | 17 | 278.80 | 448.80 | 62.18 | 4.38 | 2.72 |
| C7-102 | 17 | 396.67 | 566.67 | 24.72 | 17 | 390.43 | 560.43 | 51.48 | 1.60 | 1.11 |
| C7-103 | 19 | 390.53 | 580.16 | 19.61 | 18 | 385.45 | 575.45 | 21.30 | 1.32 | 0.82 |
| C7-104 | 19 | 341.71 | 531.71 | 7.36 | 18 | 332.41 | 512.41 | 7.83 | 2.80 | 3.77 |
| C7-105 | 13 | 309.93 | 439.93 | 49.22 | 11 | 278.34 | 388.34 | 75.51 | 11.35 | 13.28 |
| C7-106 | 20 | 333.19 | 533.19 | 65.85 | 20 | 315.44 | 515.44 | 66.66 | 5.63 | 3.44 |
| C7-107 | 15 | 303.86 | 453.86 | 56.02 | 12 | 293.42 | 413.42 | 74.56 | 3.56 | 9.78 |
| C7-108 | 12 | 300.79 | 420.79 | 40.91 | 10 | 273.22 | 373.22 | 60.13 | 10.09 | 12.75 |
| C7-109 | 12 | 356.29 | 476.29 | 29.73 | 11 | 351.14 | 461.14 | 46.28 | 1.47 | 3.29 |
| Avg | 8.15 | 6.45 | ||||||||
| 1 | 中冷联盟官网.5000亿,7322 万吨!数字的背后是冷链物流巨大的市场潜力[EB/OL].(2021-831)[2021-11-21].. |
| China Cold Union official website.500 billion, 73.22 million tons!Behind the figures is the huge market potential of cold chain logistics[EB/OL] .(2021-831) [2021-11-21].. | |
| 2 | 马艳芳,应斌,周晓阳,等. 基于冲突合作关系的生鲜选址-路径多主体优化模型与算法[J].系统工程理论与实践,2020,40(12):3194-3209. |
| Ma Y F, Ying B, Zhou X Y, et al.Multi-agent optimization model and algorithm for perishable food location: routing problem with conflict and coordination[J]. Systems Engineering-Theory & Practice, 2020,40(12):3194-3209. | |
| 3 | Wen L, Eglese R. Minimum cost VRP with time-dependent speed data and congestion charge[J]. Computers & Operations Research, 2015,56: 41-50. |
| 4 | 丁秋雷, 胡祥培, 姜洋,等. 考虑新鲜度的农产品冷链 物流配送受扰恢复模型[J]. 系统工程理论与实践, 2021, 41(3): 667-677. |
| Ding Q L, Hu X P, Jiang Y, et al.Arecory model for cold chain delivery of agricultural products by considering freshness[J]. Systems Engineering-Theory & Practice, 2021, 41(3): 667-677. | |
| 5 | Li J, Li Y, Pardalos P M. Multi-depot vehicle routing problem with time windows under shared depot resources[J]. Journal of Combinatorial Optimization, 2014,31(2): 515-532. |
| 6 | Afshar-Nadjafi B, Afshar-Nadjafi A. A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet[J]. Journal of King Saud University - Engineering Sciences,2017, 29(1): 29-34. |
| 7 | 王征,张俊,王旭坪.多车场带时间窗车辆路径问题的变邻域搜索算法[J].中国管理科学,2011,19(2): 99-109. |
| Wang Z, Zhang J, Wang X P.A modified variable neighborhood search algorithm for the multi-depot vehicle routing problem with time windows[J].Chinese Journal of Managent Science, 2011,19(2): 99-109. | |
| 8 | 刘家利, 马祖军. 存在车辆租赁及共享且有时间窗的多配送中心开环VRP[J]. 系统工程理论与实践,2013, 33(3): 666-675. |
| Liu J L, Ma Z J.Multi-depot open vehicle routing problem with time windows based on vehicle leasing and sharing[J]. Systems Engineering - Theory & Practice,2013, 33(3): 666-675. | |
| 9 | Mirabi M, Shokrib N, Sadeghieh A. Modeling and solving the multi-depot vehicle routing problem with time[J]. International Journal of Supply and Operations Management,2016, 3(3): 1373-1390. |
| 10 | Dabia S, Ropke S, van Woensel T, et al. Branch and price for the time-dependent vehicle routing problem with time windows[J]. Transportation Science, 2013,47(3): 380-396. |
| 11 | Fleischmann B, Gietz M, Gnutzmann S. Time-varying travel times in vehicle routing[J]. Transportation Science,2004, 38(2): 160-173. |
| 12 | Malandraki C, Daskin M S. Time dependent vehicle routing problems: formulations, properties and heuristic algorithms[J]. Transportation Science, 1992,26(3): 185-200. |
| 13 | Ichoua S, Gendreau M, Potvin J Y. Vehicle dispatching with time-dependent travel times[J]. European Journal of Operational Research, 2003,144(2): 379-396. |
| 14 | Balseiro S R, Loiseau I, Ramonet J. An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows[J]. Computers & Operations Research,2011, 38(6): 954-966. |
| 15 | Dabia S, Ropke S, van Woensel T, et al. Branch and price for the time-dependent vehicle routing problem with time windows[J]. Transportation Science, 2013,47(3): 380-396. |
| 16 | Zhao X, Goncalves G, Dupas R. A genetic approach to solving the vehicle routing problem with time-dependent travel times[J]. Institute of Electrical and Electronics Engineers, 2008: 413-418. |
| 17 | 周鲜成, 刘长石, 周开军,等. 时间依赖型绿色车辆路 径模型及改进蚁群算法[J]. 管理科学学报, 2019,22(5): 57-68. |
| Zhou X C, Liu C S, Zhou K J,et al.Improved ant colony algorithm and modelling of time-dependent green vehicle routing problem[J]. Journal of Management Science in China, 2019,22(5):57-68. | |
| 18 | 周鲜成, 吕阳, 贺彩虹,等. 考虑时变速度的多车场 绿色车辆路径模型及优化算法研究[J]. 控制与决 策.2021,37(2):473-482. |
| Zhou X C, Lv Y, He C H,et al.Research on multi-depot green vehicle routing model and its optimization algorithm with time-varying speed[J].Control and Decision.2021,37(2):473-482. | |
| 19 | Rincon-Garcia N, Waterson B, Cherrett T J, et al. A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations-An application in city logistics[J]. Transportation Research Part A: Policy and Practice, 2020,137: 429-446. |
| 20 | Tarantilis C D, Kiranoudis C T. Distribution of fresh meat[J]. Journal of Food Engineering, 2002,51(1): 85-91. |
| 21 | Liu R, Jiang Z B, Geng N. A hybrid genetic algorithm for the multi-depot open vehicle routing problem[J]. OR Spectrum, 2012,36(2): 401-421. |
| 22 | 张江华, 李进, 高敏刚. 同时集散货物的开放式车辆 路径问题研究[J]. 中国管理科学, 2013,21(4): 188-192. |
| Zhang J H, Li J, Gao M G.Research on the open vehicle routing problem of with simultaneous deliveries and pickups[J]. Chinese Journal of Management Science,2013,21(4):188-192. | |
| 23 | 杨海强. 基于出租车GPS数据的城市常发性交通拥 堵演变研究[D]. 哈尔滨:哈尔滨工业大学, 2018. |
| Yang H Q.Research of urban recurrent congestion evolution based on taxi GPS data [D]. Harbin: Harbin Institute of Technology,2018. | |
| 24 | Kim Y K, Park K, Ko J. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling[J]. Computers & Operations Research, 2003,30(8): 1151-1171. |
| 25 | Kohl N, Desrosiers J, Madsen O B G, et al. 2-Path cuts for the vehicle routing problem with time windows[J]. Transportation Science, 1999,33(1): 101-116. |
| 26 | Figliozzi M A. The time dependent vehicle routing problem with time windows:benchmark problems, an efficient solution algorithm, and solution characteristics[J].Transporation Research Part E,2012,48(3):619-636. |
| [1] | Bing Su, Xiangwen Chen, Meng Zhang, Hao Ji, Lulu Sun, Yang Xu, Qing’e Guo, Guohui Lin. Research on Route Selection for Emergency Supply Distribution Based on Dual Losses of Shortage and Delay [J]. Chinese Journal of Management Science, 2025, 33(8): 209-217. |
| [2] | Shuai Zhang, Siliang Liu, Wenyu Zhang. Vehicle Routing Problems with Time Windows under the Collaborative Delivery Mode of Electric Vehicle-drone [J]. Chinese Journal of Management Science, 2025, 33(4): 131-141. |
| [3] | Houming Fan,Xue Bai,Panjun Tian,Yueguang Zhang. Door Assignment and Time-dependent Vehicle Routing Problem with Multiple Cross-Docks [J]. Chinese Journal of Management Science, 2024, 32(4): 108-119. |
| [4] | Guiqin Xue, Xianlong Ge. Study on Two-stage Dynamic Vehicle Scheduling Optimization Considering the Proactive Category [J]. Chinese Journal of Management Science, 2024, 32(12): 164-172. |
| [5] | HE Pei-yang, LI Kun-peng, TIAN Qian-nan. The Integrated Production and Transportation Scheduling Problem Based on 3D Printing Technology [J]. Chinese Journal of Management Science, 2023, 31(4): 239-249. |
| [6] | Xian-cheng ZHOU,Tao-ying JIANG,Cai-hong HE,Li WANG,Yang LV. Green Vehicle Routing Model and Its Solution Algorithm in Cold-chain Logistics Distribution [J]. Chinese Journal of Management Science, 2023, 31(12): 203-214. |
| [7] | GE Xian-long, WEN Peng-zhe, XUE Gui-qin. Two-echelon Dynamic Vehicle Routing Problem with Request Forecasting [J]. Chinese Journal of Management Science, 2022, 30(8): 210-220. |
| [8] | LI Yang, FAN Hou-ming, ZHANG Xiao-nan. A Periodic Optimization Model and Solution for Capacitated Vehicle Routing Problem with Dynamic Requests [J]. Chinese Journal of Management Science, 2022, 30(8): 254-266. |
| [9] | YAN Rui, CHEN Li-shuang, ZHU Xiao-ning, TIAN Hao-tong, WEN Ya, ZHANG Qun. Research on Vehicle Routing Problem with Truck and Drone Considering Regional Restriction [J]. Chinese Journal of Management Science, 2022, 30(5): 144-155. |
| [10] | LIU Ming, XU Xi-fen, NING Jing, CAO Jie. Modeling and Optimizing Method for Rebalancing the Dock-less Bicycles based on Order Data Analysis [J]. Chinese Journal of Management Science, 2022, 30(4): 275-286. |
| [11] | PU Xu-jin, LI Xiu-feng. Multi-objective Low Carbon MDVRP Optimization Based on E-commerce Commitment Delivery Mechanism [J]. Chinese Journal of Management Science, 2021, 29(8): 57-66. |
| [12] | TANG Hui-ling, TANG Heng-shu, ZHU Xing-liang. Research on Low-carbon Vehicle Routing Problem Based on Modified Ant Colony Algorithm [J]. Chinese Journal of Management Science, 2021, 29(7): 118-127. |
| [13] | XU Dong-yang, LI Kun-peng, CUI Li-gang, TIAN Qian-nan. Multi-commodity Unpaired Supply-demandand Split Pickup and Delivery Vehicle Routing Problem with Multi-depot and Multi-type Trucks [J]. Chinese Journal of Management Science, 2021, 29(1): 127-137. |
| [14] | GUO Dong-wei, DING Gen-hong, LIU Wei. Improved Multi-Strategy Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows [J]. Chinese Journal of Management Science, 2020, 28(7): 204-211. |
| [15] | GUO Fang, YANG Jun, YANG Chao. Study on Heterogeneous Electric Vehicle Routing and Batterycharging Problem with the Consideration of Differentiated Service Cost [J]. Chinese Journal of Management Science, 2019, 27(8): 118-128. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||