| 1 | Yu L A, Liang S D, Chen R D,et al. Predicting monthly biofuel production using a hybrid ensemble forecasting methodology[J]. International Journal of Forecasting,2019,38(1):3-20. | 
																													
																							| 2 | Liu R P, Demirer R, Gupta R,et al. Volatility forecasting with bivariate multifractal models[J]. Journal of Forecasting,2019,39(2):155-167. | 
																													
																							| 3 | Bi J W, Liu Y, Li H. Daily tourism volume forecasting for tourist attractions[J]. Annals of Tourism Research,2020,83:102923. | 
																													
																							| 4 | Li J P, Hao J, Feng Q Q,et al. Optimal selection of heterogeneous ensemble strategies of time series forecasting with multi-objective programming[J]. Expert Systems with Applications,2021,166:114091. | 
																													
																							| 5 | Feng Q Q, Sun X L, Hao J,et al. Predictability dynamics of multifactor-influenced installed capacity: a perspective of country clustering[J]. Energy,2021,214:118831. | 
																													
																							| 6 | Risse M.Combining wavelet decomposition with machine learning to forecast gold returns[J]. International Journal of Forecasting,2019,35(2):601-615. | 
																													
																							| 7 | Yu L A, Ma Y M, Ma M Y. An effective rolling decomposition-ensemble model for gasoline consumption forecasting[J]. Energy,2021,222:119869. | 
																													
																							| 8 | Li J P, Hao J, Sun X L,et al. Forecasting China’s sovereign CDS with a decomposition reconstruction strategy[J]. Applied Soft Computing,2021,105:107291. | 
																													
																							| 9 | 赵阳,郝俊,李建平. 基于修剪平均的神经网络集成时序预测方法[J]. 中国管理科学,2022,30(3):211-220. | 
																													
																							|  | Zhao Y, Hao J, Li J P. A trimmed averaged based neural network ensemble approach for time series forecasting[J]. Chinese Journal of Management Science, 2022,30(3):211-220. | 
																													
																							| 10 | 郝俊,李建平,冯倩倩,等. 基于溢出效应的金融危机早期预警方法研究[J]. 中国管理科学,2023,31(4): 35-45. | 
																													
																							|  | Hao J, Li J P, Feng Q Q, et al. Early warning of financial crisis based on the spillover effects[J]. Chinese Journal of Management Science,2023,31(4): 35-45. | 
																													
																							| 11 | Luo B, Wan L, Li T S,et al. Business forecasting of double-trend time series: an improved PLS-based time-varying weight combination approach[J]. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l'Administration,2018,35(3):333-348. | 
																													
																							| 12 | Hibon M, Evgeniou T. To combine or not to combine: selecting among forecasts and their combinations[J]. International Journal of Forecasting,2005,21(1):15-24. | 
																													
																							| 13 | Kang Y F, Cao W, Petropoulos F,et al. Forecast with forecasts: diversity matters[J]. European Journal of Operational Research,2022,301(1):180-190. | 
																													
																							| 14 | Ren Y, Liang X X, Wang Q. Short-term exchange rate forecasting: a panel combination approach[J]. Journal of International Financial Markets, Institutions and Money,2021,73:101367. | 
																													
																							| 15 | Costantini M, Pappalardo C. A hierarchical procedure for the combination of forecasts[J]. International Journal of Forecasting,2010,26(4):725-743. | 
																													
																							| 16 | Kışınbay T. The use of encompassing tests for forecast combinations[J]. Journal of Forecasting,2010,29(8):715-727. | 
																													
																							| 17 | Xiao L, Wang C, Dong Y X,et al. A novel sub-models selection algorithm based on max-relevance and min-redundancy neighborhood mutual information[J]. Information Sciences,2019,486:310-339. | 
																													
																							| 18 | Che J X. Optimal sub-models selection algorithm for combination forecasting model[J]. Neurocomputing,2015,151:364-375. | 
																													
																							| 19 | Elliott G, Timmermann A. Optimal forecast combination under regime switching[J]. International Economic Review,2005,46(4):1081-1102. | 
																													
																							| 20 | Cang S, Yu H N. A combination selection algorithm on forecasting[J].European Journal of Operational Research, 2014, 234(1): 127-139. | 
																													
																							| 21 | Diebold F X, Pauly P. Structural change and the combination of forecasts[J]. Journal of Forecasting,1987,6(1):21-40. | 
																													
																							| 22 | Hajirahimi Z, Khashei M. Hybrid structures in time series modeling and forecasting: a review[J]. Engineering Applications of Artificial Intelligence,2019,86:83-106. | 
																													
																							| 23 | Kim J M, Kim D H, Jung H J. Applications of machine learning for corporate bond yield spread forecasting[J]. The North American Journal of Economics and Finance,2021,58:101540. | 
																													
																							| 24 | 高晓辉,周坤,李廉水.基于XGBOOST和ELM的混合空气质量预警系统:以南京为例[J].中国管理科学,2023,31(5):269-278. | 
																													
																							|  | Gao X H, Zhou K, Li L S. Hybrid air quality early warning system based on XGBoost and ELM: acase study of Nanjing[J]. Chinese, Journal of Management Science, 2023,31(5):269-278. | 
																													
																							| 25 | Zhao W G, Wang J Z, Lu H Y. Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model[J]. Omega,2014,45:80-91. | 
																													
																							| 26 | Hamilton. Time series analysis[M]. Princeton:Princeton University Press,1994. | 
																													
																							| 27 | Sun X L, Wang J, Yao Y Z,et al. Spillovers among sovereign CDS, stock and commodity markets: a correlation network perspective[J]. International Review of Financial Analysis,2020,68:101271. | 
																													
																							| 28 | 马旭平,王军,孙晓蕾,等.主权风险溢出网络动态特征研究:以“一带一路”国家为例[J].系统工程理论与实践,2019,39(6):1363-1372. | 
																													
																							|  | Ma X P, Wang J, Sun X L,et al. A study on the dynamics of sovereign risk spillover networks: evidence from the countires along the belt and road[J]. System Engineering-Theory & Practice,2019,39(6):1363-1372. | 
																													
																							| 29 | 李建平,王军,冯倩倩,等.基于多元驱动因素的主权CDS利差预测研究[J].计量经济学报,2021,1(2):362-376. | 
																													
																							|  | Li J P, Wang J, Feng Q Q,et al. Forecasting soveregin CDS spreads based on multiple determinants[J]. China Journal of Economics,2021,1(2):362-376. | 
																													
																							| 30 | Wang J, Wang Z, Li X,et al. Artificial bee colony-based combination approach to forecasting agricultural commodity prices[J]. International Journal of Forecasting,2022,38:DOI: 10.1016/j.ijforecast.2019.08.006. | 
																													
																							| 31 | 李建平,袁佳鑫,尚书凡,等. 基于联合聚类的国家风险集成预测方法研究 [J]. 中国石油大学学报(社会科学版),2023,39(5):101-108. | 
																													
																							|  | Li J P, Yuan J X, Shang S F, et al. Research on ensemble forecasting approach of country risk based on joint clustering strategy[J]. Journal of China University of Petroleum(Edition of Social Sciences), 2023, 39(5): 101-168. |