主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (12): 253-263.doi: 10.16381/j.cnki.issn1003-207x.2023.0375cstr: 32146.14.j.cnki.issn1003-207x.2023.0375

• • 上一篇    下一篇

在线点评场景中考虑消费者损失厌恶的动态定价

汪潇1,2, 杨超林1()   

  1. 1.上海财经大学交叉科学研究院,上海 200433
    2.南京工业职业技术大学商务贸易学院,江苏 南京 210023
  • 收稿日期:2023-03-07 修回日期:2023-08-14 出版日期:2025-12-25 发布日期:2025-12-25
  • 通讯作者: 杨超林 E-mail:yang.chaolin@sufe.edu.cn
  • 基金资助:
    国家自然科学基金项目(72531005);国家自然科学基金项目(72122012);国家自然科学基金项目(72071126);中央高校基本科研业务费专项资金项目(CXJJ-2022-376)

Dynamic Pricing with Consumer Loss Aversion and Online Reviews

Xiao Wang1,2, Chaolin Yang1()   

  1. 1.Research Institute for Interdisciplinary Sciences,Shanghai University of Finance and Economics,Shanghai 200433,China
    2.School of Business and Trade,Nanjing Vocational University of Industry Technology,Nanjing 210023,China
  • Received:2023-03-07 Revised:2023-08-14 Online:2025-12-25 Published:2025-12-25
  • Contact: Chaolin Yang E-mail:yang.chaolin@sufe.edu.cn

摘要:

消费者普遍存在损失厌恶的心理,往往不愿意购买质量不确定的新商品。在购买商品前,消费者可以通过浏览点评平台展示的商品评分信息,对商品质量形成更明确的认知,从而减轻损失厌恶的影响。消费者在购买及使用后,又可能回到点评平台上给出评分。在考虑消费者损失厌恶的在线点评场景下,本文构建了一个垄断企业多阶段的动态定价模型。企业需要通过动态调整价格,在赚取更高的当期收益与更快积累评分信息之间取得平衡,从而获取最大化收益。在建立原始问题后,基于流体近似方法进行了确定性处理,从中找到了渐进最优的定价策略,并讨论了消费者损失厌恶的引入对定价造成的影响。最后,基于真实数据的数值实验,验证了模型的合理性及算法的有效性。

关键词: 损失厌恶, 在线点评, 动态定价, 流体近似

Abstract:

Consumers are generally loss averse and are often reluctant to purchase emerging goods of uncertain quality. Before purchasing a good, consumers may browse the rating information displayed on the review platform to form a clearer perception of the quality of the good, mitigating the impact of loss aversion. Then, after purchase and use, consumers may return to the review platform to give their ratings. A multi-stage dynamic pricing model is constructed for a monopoly firm under the online review scenario that considers consumers' loss aversion. The firm maximizes its revenue by dynamically adjusting its price to balance earning higher current revenue and accumulating rating information more quickly. Due to the complex inter-period impacts of pricing and the stochastic and non-linear properties of the evolution process of the state variables, the exact optimal strategy for the problem is difficult to find. Therefore, a deterministic treatment based on the fluid approximation method is carried out, from which a pricing strategy with asymptotic optimality is found. Furthermore, the impact of consumer loss aversion on pricing is discussed. Finally, the effectiveness of the policy is verified through numerical experiments based on real data from Amazon. The experimental results find that the dynamic price strategy can enhance revenue by about 10% compared to the fixed price strategy. On the basis of the dynamic price strategy, further adding the portrayal and treatment of consumer loss aversion can further enhance revenue by about 1%. In addition, the dynamic fluid matching strategy proposed in this paper has the form of a semi-closed solution and thus has the advantage of high computational efficiency. It contributes both in theory and application. In theory, it is proved that the pricing strategy based on the fluid approximation method is asymptotically optimal. In terms of application, the results of this paper can provide guiding suggestions on pricing for related firms.

Key words: loss aversion, online reviews, dynamic pricing, fluid approximation

中图分类号: