| [1] |
黄益平, 邱晗. 大科技信贷: 一个新的信用风险管理框架[J]. 管理世界, 2021, 37(2): 12-21+50+2+16.
|
|
Huang Y P, Qiu H. Big tech lending: A new credit risk management framework[J]. Journal of Management World, 2021, 37(2): 12-21+50+2+16.
|
| [2] |
周颖. 基于违约区分程度最大权重的信用评级模型[J]. 管理科学学报, 2019, 22(9): 52-66.
|
|
Zhou Y. Credit rating model based on weight of greatest default distinction degree[J]. Journal of Management Sciences in China, 2019, 22(9): 52-66.
|
| [3] |
石宝峰, 刘锋, 王建军, 等. 基于PROMETHEE-II的商户小额贷款信用评级模型及实证[J]. 运筹与管理, 2017, 26(9): 137-147.
|
|
Shi B F, Liu F, Wang J J, et al. A credit rating model of microfinance loans for small private business based on PROMETHEE-II and its empirical study[J]. Operations Research and Management Science, 2017, 26(9): 137-147.
|
| [4] |
迟国泰, 李鸿禧, 潘明道. 基于违约鉴别能力组合赋权的小企业信用评级——基于小型工业企业样本数据的实证分析[J]. 管理科学学报, 2018, 21(3): 105-126.
|
|
Chi G T, Li H X, Pan M D. Small enterprises credit rating based on default identification ability of combination weighting: Based on an empirical analysis of small industrial enterprises[J]. Journal of Management Sciences in China, 2018, 21(3): 105-126.
|
| [5] |
于善丽, 迟国泰, 姜欣. 基于指标体系违约鉴别能力最大的小企业债信评级体系及实证[J]. 中国管理科学, 2020, 28(6): 38-50.
|
|
Yu S L, Chi G T, Jiang X. Small enterprise facility rating based on the maximum discrimination of indicator system[J]. Chinese Journal of Management Science, 2020, 28(6): 38-50.
|
| [6] |
Altman E I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968, 23(4): 589-609.
|
| [7] |
牟刚, 袁先智. 大数据架构下企业内部信用评级的实证研究[J].系统工程学报, 2016,31(6): 808-815+849.
|
|
Mu G, Yuan X Z. Empirical study for enterprise internal credit rating under big data framework[J]. Journal of Systems Engineering, 2016, 31(6): 808-815+849.
|
| [8] |
Chai N, Shi B, Hua Y. Loss given default or default status: Which is better to determine farmers’ credit ratings?[J]. Finance Research Letters, 2023, 53: 103674.
|
| [9] |
Zhang R, Xue L, Wang Q. An ensemble credit scoring model based on logistic regression with heterogeneous balancing and weighting effects[J]. Expert Systems with Applications, 2023, 212: 118732.
|
| [10] |
黄志刚, 刘志惠, 朱建林. 多源数据信用评级普适模型栈框架的构建与应用[J]. 数量经济技术经济研究, 2019, 36(4): 155-168.
|
|
Huang Z G, Liu Z H, Zhu J L. A general stack framework of credit risk rating models based on multi source data[J]. The Journal of Quantitative & Technical Economics, 2019, 36(4): 155-168.
|
| [11] |
程砚秋. 基于不均衡数据的小企业信用风险评价[J]. 运筹与管理, 2016, 25(6): 181-189.
|
|
Cheng Y Q. Credit rating of small enterprises based on unbalanced data[J]. Operations Research and Management Science, 2016, 25(6): 181-189.
|
| [12] |
张卫国, 卢媛媛, 刘勇军. 基于非均衡模糊近似支持向量机的P2P网贷借款人信用风险评估及应用[J]. 系统工程理论与实践, 2018, 38(10): 2466-2478.
|
|
Zhang W G, Lu Y Y, Liu Y J. The borrowers' credit risk assessment in P2P platform based on fuzzy proximal support vector machine and its application[J]. Systems Engineering-Theory & Practice, 2018, 38(10): 2466-2478.
|
| [13] |
杨莲, 石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75.
|
|
Yang L, Shi B F. Credit risk evaluation model and empirical research based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75.
|
| [14] |
杨健安, 刘传斌, 余乐安. 基于相对逆序数的评审专家可信度评价方法[J]. 统计与决策, 2022, 38(3): 184-188.
|
|
Yang J A, Liu C B, Yu L A. Evaluation method of credibility of evaluation experts based on relative reverse order number[J]. Statistics & Decision, 2022, 38(3): 184-188.
|
| [15] |
刘进生, 王彩贤. 群体排序一致性的逆序数检验法[J]. 系统工程学报, 1996, 11(2): 89-93.
|
|
Liu J S, Wang C X. The testing method for consistency in group ordering based on the number of reverse order[J]. Journal of Systems Engineering, 1996, 11(2): 89-93.
|
| [16] |
迟国泰, 张亚京, 石宝峰. 基于Probit回归的小企业债信评级模型及实证[J]. 管理科学学报, 2016, 19(6): 136-156.
|
|
Chi G T, Zhang Y J, Shi B F. The debt rating for small enterprises based on Probit regression[J]. Journal of Management Sciences in China, 2016, 19(6): 136-156.
|
| [17] |
董路安, 叶鑫. 基于改进教学式方法的可解释信用风险评价模型构建[J]. 中国管理科学, 2020, 28(9): 45-53.
|
|
Dong L A, Ye X. Interpretable credit risk assessment modeling based on improved pedagogical method[J]. Chinese Journal of Management Science, 2020, 28(9): 45-53.
|
| [18] |
Rezac M, Rezac F. How to measure the quality of credit scoring models[J]. Czech Journal of Economics and Finance, 2011, 61(5): 486-507.
|
| [19] |
Marinakis Y, Marinaki M, Doumpos M, et al. Ant colony and particle swarm optimization for financial classification problems[J]. Expert Systems with Applications, 2009, 36(7): 10604-10611.
|
| [20] |
马晓君, 董碧滢, 王常欣. 一种基于PSO优化加权随机森林算法的上市公司信用评级模型设计[J]. 数量经济技术经济研究, 2019, 36(12): 165-182.
|
|
Ma X J, Dong B Y, Wang C X. Design of a credit rating model of quoted companies based on the PSO optimized weighted random forest algorithm[J]. The Journal of Quantitative & Technical Economics, 2019, 36(12): 165-182.
|
| [21] |
He H, Zhang W, Zhang S. A novel ensemble method for credit scoring: Adaption of different imbalance ratios[J]. Expert Systems with Applications, 2018, 98: 105-117.
|
| [22] |
杨莲, 石宝峰, 迟国泰, 等. 非均衡数据下基于BPNN-LDAMCE的信用评级模型设计及应用[J]. 数量经济技术经济研究, 2022, 39(3): 152-169.
|
|
Yang L, Shi B F, Chi G T, et al. Design and application of a credit rating model based on BPNN-LDAMCE with imbalanced data[J]. The Journal of Quantitative & Technical Economics, 2022, 39(3): 152-169.
|
| [23] |
Zhou Y, Chi G, Liu J, et al. Default discrimination of credit card: Feature combination selection based on improved FDAF-score[J]. Expert Systems with Applications, 2022, 206: 117829.
|
| [24] |
Abedin M Z, Moon M H, Hassan M K, et al. Deep learning-based exchange rate prediction during the COVID-19 pandemic[J]. Annals of Operations Research, 2025, 345(2): 1335-1386.
|
| [25] |
刘赛可, 何晓群, 夏利宇.不平衡数据下模型评价指标的有效性探讨[J].统计与决策,2022,38(19): 5-9.
|
|
Liu S K, He X Q, Xia L Y. Study on the validity of model evaluation index under imbalanced data[J]. Statistics & Decision, 2022, 38(19): 5-9.
|
| [26] |
Lessmann S, Baesens B, Seow H V, et al. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research[J]. European Journal of Operational Research, 2015, 247(1): 124-136.
|
| [27] |
Lu Y, Yang L, Shi B, et al. A novel framework of credit risk feature selection for SMEs during industry 4.0[J]. Annals of Operations Research, 2025, 350(2): 425-452.
|
| [28] |
Wang D, Zhang Z, Bai R, et al. A hybrid system with filter approach and multiple population genetic algorithm for feature selection in credit scoring[J]. Journal of Computational and Applied Mathematics, 2018, 329: 307-321.
|
| [29] |
Zhang T, Chi G. A heterogeneous ensemble credit scoring model based on adaptive classifier selection: An application on imbalanced data[J]. International Journal of Finance & Economics, 2021, 26(3): 4372-4385.
|
| [30] |
Xiao J, Wang Y, Chen J, et al. Impact of resampling methods and classification models on the imbalanced credit scoring problems[J]. Information Sciences, 2021, 569: 508-526.
|