中国管理科学 ›› 2023, Vol. 31 ›› Issue (12): 301-310.doi: 10.16381/j.cnki.issn1003-207x.2021.0383cstr: 32146.14.j.cnki.issn1003-207x.2021.0383
收稿日期:2021-02-26
修回日期:2021-05-11
出版日期:2023-12-15
发布日期:2023-12-20
通讯作者:
宫大庆
E-mail:dqgong@bjtu.edu.cn
基金资助:
Shi-feng LIU1,3,Lai-song KANG1,2,3,Da-qing GONG1,3(
)
Received:2021-02-26
Revised:2021-05-11
Online:2023-12-15
Published:2023-12-20
Contact:
Da-qing GONG
E-mail:dqgong@bjtu.edu.cn
摘要:
群组指多个用户形成的群体;面向群组的事件兴趣点推荐,涉及到多个实体(如用户、群组、事件、兴趣点等)之间的复杂交互。本研究对基于事件的社交网络中多个实体及其交互进行了综合考虑,提出了一个基于异构信息网络和注意神经网络的事件兴趣点推荐算法,为群组推荐合适的兴趣点用于举办事件。首先,使用了基于优先级的采样技术来选择高质量的路径实例;然后,构建了群组、事件、兴趣点和基于元路径的上下文嵌入表示,并采用共同注意机制对其进行改进,从而增强了模型的可解释性;最后,基于真实数据集的实验结果验证了本研究方法的有效性和实用性,以及将异构信息网络和注意神经网络应用于事件兴趣点推荐的前景。
中图分类号:
刘世峰,康来松,宫大庆. 面向群组的事件兴趣点推荐算法研究[J]. 中国管理科学, 2023, 31(12): 301-310.
Shi-feng LIU,Lai-song KANG,Da-qing GONG. An Event POI Recommendation System for Groups in EBSN[J]. Chinese Journal of Management Science, 2023, 31(12): 301-310.
表4
不同方法在各类别数据集上的效果比较"
| 类别 | 模型 | Recall @10 | NDCG@10 |
|---|---|---|---|
| 活动 | MARec | 0.9127 | 0.7774 |
| SERGE | 0.8473 | 0.7329 | |
| DeepCoNN | 0.7653 | 0.7159 | |
| 爱好 | MARec | 0.8312 | 0.6030 |
| SERGE | 0.6784 | 0.5810 | |
| DeepCoNN | 0.5721 | 0.3724 | |
| 社交 | MARec | 0.8567 | 0.6885 |
| SERGE | 0.8203 | 0.6863 | |
| DeepCoNN | 0.4549 | 0.2862 | |
| 娱乐 | MARec | 0.9231 | 0.8210 |
| SERGE | 0.9104 | 0.8382 | |
| DeepCoNN | 0.9114 | 0.7411 | |
| 技术 | MARec | 0.7864 | 0.6369 |
| SERGE | 0.7434 | 0.6487 | |
| DeepCoNN | 0.1356 | 0.1341 |
| 1 | 郭旦怀, 张鸣珂, 贾楠,等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12):1890-1902. |
| Guo Danhuai, Zhang Mingke, Jia Nan, et al. Survey of point-of-interest recommendation research fused with deep learning[J]. Geomatics and Information Science of Wuhan University,2020,45(12):1890-1902. | |
| 2 | Feng Jie, Li Yong, Yang Zeyu, et al. Predicting human mobility with semantic motivation via multi-task attentional recurrent networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020,34(5):2360-2374. |
| 3 | Lops P, De Gemmis M, Semeraro G. Content-based recommender systems: state of the art and trends[M]//Recommender Systems Handbook. Springer, Boston, MA, 2011: 73-105. |
| 4 | 仲秋雁, 王涵雪. LBSN下基于用户朋友关系的商业POI推荐[J]. 系统工程理论与实践,2021,41(10):2501-2511. |
| Zhong Qiuyan, Wang Hanxue. Commercial POI recommendation based on user's friend relationship in LBSN[J]. Systems Engineering-Theory & Practice, 2021,41(10):2501-2511. | |
| 5 | 陈劲松, 孟祥武, 纪威宇,等. 基于多维上下文感知图嵌入模型的兴趣点推荐[J]. 软件学报,2020,31(12):3700-3715. |
| Chen Jinsong, Meng Xiangwu, Ji Weiyu, et al. POI recommendation based on multidimensional context-aware graph embedding model[J]. Ruan Jian Xue Bao/Journal of Software, 2020,31(12):3700-3715. | |
| 6 | Sun Yizhou, Han Jiawei, Zhao Peixiang, et al. Rankclus: integrating clustering with ranking for heterogeneous information network analysis [C]//Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, Saint-Petersburg, Russia, March 24-26 , Association for Computing Machinery, 2009: 565-576. |
| 7 | Shi Chuan, Li Yitong, Zhang Jiawei, et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 29(1): 17-37. |
| 8 | Zhao Huan, Yao Quanming, Li Jiandan, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax NS, Canada, August 13-17 , Association for Computing Machinery,2017: 635-644. |
| 9 | 康来松, 刘世峰, 宫大庆. LBSN中基于加权异构信息网络的兴趣点推荐[J]. 系统工程,2020,38(6):14-24. |
| Kang Laisong, Liu Shifeng, Gong Daqing. Weighted heterogeneous information networks based personalized point-of-interest recommendation system in LBSN[J]. Systems Engineering,2020,38(06):14-24. | |
| 10 | 陈江美, 张岐山, 张文德,等. 融合潜在兴趣和多类型情景信息的兴趣点推荐模型[J]. 情报科学,2021,39(3):143-149+160. |
| Chen Jiangmei, Zhang Qishan, Zhang Wende, et al. Point of interest recommendation model combining potential check-ins and multi-type contextual information. Information Science,2021,39(3):143-149+160. | |
| 11 | 朱志国, 周雨禾, 王谢宁. 移动商务中融合签到位置与用户间相似性的兴趣点精准推荐[J]. 系统工程理论与实践,2020,40(2):462-469. |
| Zhu Zhiguo, Zhou Yuhe, Wang Xiening. Recommendation of POI by integrating user similarity and location information in mobile commerce[J]. Systems Engineering- Theory& Practice,2020,40(2):462-469. | |
| 12 | Xu Linchuan, Wei Xiaokai, Cao Jiannong, et al. Embedding of Embedding (EOE) joint embedding for coupled heterogeneous networks[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, United Kingdom, February 6-10 ,Association for Computing Machinery, 2017: 741-749. |
| 13 | Dong Yuxiao, Chawla N V, Swami A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Halifax NS, Canada, August 13-17 , Association for Computing Machinery,2017: 135-144. |
| 14 | Fu Taoyang, Lee Wangchien, Lei Zhen. Hin2vec: explore meta-paths in heterogeneous information networks for representation learning[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore, November 6-10 ,Association for Computing Machinery,2017: 1797-1806. |
| 15 | Xiong Caiming, Zhong Victor, Socher R. Dynamic coattention networks for question answering[J]. arXiv preprint arXiv:, 2016. |
| 16 | Gao Jianfeng, Pantel P, Gamon M, et al. Modeling interestingness with deep neural networks[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),Doha, Qatar, October, Association for Computational Linguistics,2014: 2-13. |
| 17 | Raich M, Mueller J, Abfalter D. Hybrid analysis of textual data: grounding managerial decisions on intertwined qualitative and quantitative analysis[J]. Management Decision, 2014, 52(4):737 - 754. |
| 18 | Yin Hongzhi, Zhou Xiaofang, Cui Bin, et al. Adapting to user interest drift for poi recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2566-2581. |
| 19 | Pramanik S, Haldar R, Kumar A, et al. Deep learning driven venue recommender for event-based social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,32(11):2129-2143. |
| 20 | Hinton G E, Salakhutdinov R R. A better way to pretrain deep boltzmann machines[C]//Advances in Neural Information Processing Systems,Lake Tahoe, Nevada, United States,November 21, The MIT Press,2012: 2447-2455. |
| 21 | Chen Tianqi, Zhang Weinan, Lu Qiuxia, et al. SVDFeature: a toolkit for feature-based collaborative filtering[J]. The Journal of Machine Learning Research, 2012, 13(1): 3619-3622. |
| 22 | Phan M C, Sun Aixin, Tay Y, et al. NeuPL: Attention-based semantic matching and pair-linking for entity disambiguation[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management,Singapore, November 6-10 ,Association for Computing Machinery,2017: 1667-1676. |
| 23 | Tang Jian, Qu Meng, Wang Mingzhe, et al. Line: large-scale information network embedding[C] //Proceedings of the 24th international conference on world wide web,Florence, Italy, May 18-22 ,Association for Computing Machinery,2015: 1067-1077. |
| 24 | Pham T A N, Li Xutao, Gao Cong, et al. A general recommendation model for heterogeneous networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3140-3153. |
| 25 | Liu Shenghao, Wang Bang, Xu Minghua. Serge: successive event recommendation based on graph entropy for event-based social networks[J]. IEEE Access, 2017(6): 3020-3030. |
| 26 | Lei Zheng, Noroozi V, Yu P S. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,Cambridge, United Kingdom, February 6-10 ,Association for Computing Machinery, 2017: 425-434. |
| 27 | He Xiangnan, Liao Lizi, Zhang Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web,Companion, Perth, Australia, April 3-7, International World Wide Web Conferences Steering Committee,2017: 173-182. |
| 28 | Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work,Chapel Hill, North Carolina, USA, October 22-26, Association for Computing Machinery, 1994: 175-186. |
| 29 | Pramanik S, Gundapuneni M, Pathak S, et al. Can I foresee the success of my meetup group?[C]// Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Davis, California, August 18-21 , IEEE Press, 2016: 366-373. |
| [1] | 曹端阳, 张旭梅, 但斌. 考虑订单可拆分的第三方共享制造平台产能匹配策略[J]. 中国管理科学, 2025, 33(10): 225-235. |
| [2] | 冯宇, 党耀国, 王俊杰, 杨章程. 基于2-可加Choquet积分的混合信息灰关联决策方法及其应用[J]. 中国管理科学, 2025, 33(9): 189-200. |
| [3] | 戢守峰, 刘红玉, 王丽洁, 戢媛媛. PI环境下考虑保鲜努力的冷链产品生产-库存-运输联合优化模型与求解[J]. 中国管理科学, 2025, 33(8): 166-176. |
| [4] | 毛照昉, 袁锐莹, 张清然. 考虑捆绑销售的在线课程免费试听策略研究[J]. 中国管理科学, 2025, 33(8): 238-249. |
| [5] | 陈晓红, 杨志慧, 胡东滨. 数字化全渠道客户行为:研究热点与知识框架[J]. 中国管理科学, 2025, 33(7): 1-10. |
| [6] | 丁黎黎, 赵忠超, 张凯旋. 感知价值对个人碳账户绿色信贷发展的作用机制研究[J]. 中国管理科学, 2025, 33(5): 344-355. |
| [7] | 谷炜, 刘亚金, Lu Feng Susan, 闫相斌. 人工智能驱动管理决策:应用、感知与偏见[J]. 中国管理科学, 2025, 33(5): 99-112. |
| [8] | 刘嘉, 袁欣, 阮伟乔, 白晋宇. 呼吸道传染病疫情下地铁站行人感染风险控制[J]. 中国管理科学, 2025, 33(5): 236-246. |
| [9] | 卞亦文, 程文超. 平台供应链线下渠道策略与运营模式选择研究[J]. 中国管理科学, 2025, 33(4): 165-174. |
| [10] | 苏兵, 耿雪韵, 姬浩, 徐阳, 郭清娥, 陈光会, 张娟. 需求点服务请求无法预知的应急物资配送路径选择研究[J]. 中国管理科学, 2025, 33(4): 197-203. |
| [11] | 巩在武, 阳佳琦. 考虑灾民心理的多周期应急物资调度不确定规划建模研究[J]. 中国管理科学, 2025, 33(3): 209-222. |
| [12] | 柴一栋, 刘昊鑫, 姜元春, 刘业政. 基于重要性最大化与社区划分的图神经网络推荐系统对抗攻击方法[J]. 中国管理科学, 2025, 33(2): 95-104. |
| [13] | 杨善林, 李霄剑, 莫杭杰, 张强, 唐孝安. 科技战略供应链的基本特征与关键科学问题[J]. 中国管理科学, 2025, 33(1): 1-13. |
| [14] | 陈晓红, 许冠英, 徐雪松, 易国栋, 唐加乐, 刘天朔. 新质生产力视域下管理科学变革:内涵特征、现实挑战与发展路径[J]. 中国管理科学, 2025, 33(1): 14-21. |
| [15] | 胡勋锋, 单而芳, 李登峰. 联盟结构和交流网络限制下合作博弈的Shapley值研究进展[J]. 中国管理科学, 2025, 33(1): 140-152. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||