主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (11): 345-356.doi: 10.16381/j.cnki.issn1003-207x.2024.1609

• • 上一篇    

可再生能源项目投资风险“识别-评估-预警”联动模型:基于“一带一路”共建国家案例

丁浩1,2, 苏裕1,2, 周德群1,2, 赵斯琪1,2(), 张一宁1,2   

  1. 1.南京航空航天大学经济与管理学院,江苏 南京 211106
    2.南京航空航天大学能源软科学研究中心,江苏 南京 211106
  • 收稿日期:2024-09-13 修回日期:2025-03-10 出版日期:2025-11-25 发布日期:2025-11-28
  • 通讯作者: 赵斯琪 E-mail:zhaosiqi@nuaa.edu.cn
  • 基金资助:
    国家社会科学基金重大项目(21&ZD110);国家自然科学基金项目(72204111)

'Identification-Assessment-Alert' Integration Model of Investment Risks in Renewable Energy Projects: Cases of Belt and Road Countries

Hao Ding1,2, Yu Su1,2, Dequn Zhou1,2, Siqi Zhao1,2(), Yining Zhang1,2   

  1. 1.College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.Research Center for Soft Energy Science,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2024-09-13 Revised:2025-03-10 Online:2025-11-25 Published:2025-11-28
  • Contact: Siqi Zhao E-mail:zhaosiqi@nuaa.edu.cn

摘要:

在“一带一路”重大战略部署下,中国对东道国可再生能源的投资逐年增加,投资风险管控需求日益突出。本研究基于风险“识别-评估-预警”联动建模的思想,首先运用BERTopic主题模型识别可再生能源项目投资关键风险因素;其次,基于熵权法改进的CRITIC模型,对投资风险进行评价;最后,利用高斯混合模型在评估的基础上对相关国家进行风险等级聚类,将“一带一路”沿线64个共建国家分为8个高风险、10个中高风险、11个中风险、13个中低风险和22个低风险国家,并基于优化的支持向量机方法对各个国家投资风险进行了预测分析。综合对比国家评分、国家等级和指标贡献度,更好地了解了不同国家之间的投资风险差异,为投资者提供了有针对性的决策建议。同时,也能为我国“一带一路”倡议发展提供了科学合理的政策支持。

关键词: 可再生能源, 投资风险识别, 风险评估, 风险预警, “一带一路”

Abstract:

Growing global investments in renewable energy have heightened worldwide attention to risks stemming from uncertainties. Under China’s Belt and Road Initiative (BRI), increased investments in host-country renewable energy projects underscore the critical need for effective risk management. A risk identification-assessment-early warning’ framework is employed to analyze investment risks across 64 BRI countries. Using data volatility (standard deviation) as a core metric, 2021 risks and project trends for 2023-2024 are quantified. First, an integrated risk model is constructed: BERTopic identifies risk themes, an entropy-weighted CRITIC model with Gaussian mixture distribution assesses risks based on standard deviation, and an early-warning system combines GM(1,1) forecasting with firefly algorithm-optimized SVM. Second, seven key risk dimensions are identified: political, economic, socio-environmental, market, technological, energy resource, and operational management. In 2021, risk levels varied substantially: 8 high-risk countries (e.g., Yemen, Afghanistan), 10 medium-high-risk (e.g., Iraq, Turkey), 11 medium-risk (e.g., Mongolia, Indonesia), 13 medium-low-risk (e.g., Brunei), and 22 low-risk (e.g., Singapore). Projections indicate 48 countries will experience risk-level shifts by 2023–2024, with 11 countries (e.g., Malaysia, Israel, Ukraine) facing elevated risks. Third, installed capacity and power generation volatility emerge as critical indicators. Installed capacity reflects renewable energy development potential, while generation volatility signals technological maturity—countries with higher maturity exhibit better fluctuation control, ensuring stable supply and risk mitigation. Key policy insights are offered: Chinese investors should adopt granular strategies focused on sector-specific risks rather than relying solely on country risk ratings. Governments should strengthen BRI cooperation, enhance policy frameworks, and optimize financing environments to reduce investment risks. By centering on data volatility, investors with decision-support tools and advances risk assessment precision for China's BRI renewable energy investments are provided.

Key words: renewable energy, investment risk identification, risk assessment, risk alert, The Belt and Road Initiative

中图分类号: