| [1] |
杨善林, 范先群, 丁帅, 等. 医联网与智慧医疗健康管理[J]. 管理科学, 2021, 34(6): 71-75.
|
|
Yang S L, Fan X Q, Ding S, et al. Internet of healthcare systems and smart medical health management[J]. Journal of Management Science, 2021, 34(6): 71-75.
|
| [2] |
中国互联网络信息中心. 第50次《中国互联网络发展状况统计报告》[R]. 研究报告, 中国互联网络信息中心, 2022.
|
|
China Internet Network Information Center. The 50th statistical report on China’s internet development[R]. Discussion Paper, China internet network information center, 2022.
|
| [3] |
杨善林, 丁帅, 顾东晓, 等. 医疗健康大数据驱动的知识发现与知识服务方法[J]. 管理世界, 2022, 38(1): 219-229.
|
|
Yang S L, Ding S, Gu D X, et al. Healthcare big data driven knowledge discovery and knowledge service approach[J]. Journal of Management World, 2022, 38(1): 219-229.
|
| [4] |
Chai Y, Bian Y, Liu H, et al. Glaucoma diagnosis in the Chinese context: An uncertainty information-centric Bayesian deep learning model[J]. Information Processing & Management, 2021, 58(2): 102454.
|
| [5] |
Fan W, Zhou Q, Qiu L, et al. Should doctors open online consultation services? An empirical investigation of their impact on offline appointments[J]. Information Systems Research, 2022, 34(2): 629-651.
|
| [6] |
路薇, 高盼, 翟运开. 带有反馈调节的远程医疗专家自适化推荐[J]. 系统管理学报, 2023, 32(5): 960-975.
|
|
Lu W, Gao P, Zhai Y K. An adaptive recommendation method for telemedicine specialists with feedback adjustment[J]. Journal of Systems & Management, 2023, 32(5): 960-975.
|
| [7] |
周鑫, 熊回香, 肖兵. 一种融合标签和患者咨询文本的医生推荐算法[J]. 情报科学, 2023, 41(3): 145-154.
|
|
Zhou X, Xiong H X, Xiao B. A physician recommendation algorithm based on the fusion of label and patient consultation text[J]. Information Science, 2023, 41(3): 145-154.
|
| [8] |
Fang H, Zhang D, Shu Y, et al. Deep learning for sequential recommendation[J]. ACM Transactions on Information Systems, 2021, 39(1): 1-42.
|
| [9] |
Lu J, Wu D, Mao M, et al. Recommender system application developments: A survey[J]. Decision Support Systems, 2015, 74: 12-32.
|
| [10] |
Yan Y, Yu G, Yan X. Online doctor recommendation with convolutional neural network and sparse inputs[J]. Computational Intelligence and Neuroscience, 2020, 2020(1): 8826557.
|
| [11] |
Chiang J H, Ma C Y, Wang C S, et al. An adaptive, context-aware, and stacked attention network-based recommendation system to capture users’ temporal preference[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(4): 3404-3418.
|
| [12] |
胡春华, 邓奥, 童小芹, 等. 社交电商中融合信任和声誉的图神经网络推荐研究[J]. 中国管理科学, 2021, 29(10): 202-212.
|
|
Hu C H, Deng A, Tong X Q, et al. A graph neural network recommendation study combining trust and reputation in social E-commerce[J]. Chinese Journal of Management Science, 2021, 29(10): 202-212.
|
| [13] |
刘世峰, 康来松, 宫大庆.面向群组的事件兴趣点推荐算法研究[J].中国管理科学,2023,31(12): 301-310.
|
|
Liu S F, Kang L S, Gong D Q. An event POI recommendation system for groups in EBSN[J]. Chinese Journal of Management Science,2023,31(12): 301-310.
|
| [14] |
Brownlee J. Probability for machine learning: Discover how to harness uncertainty with Python[M]. San Francisco:Machine Learning Mastery, 2019.
|
| [15] |
Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for computer vision?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, December 4-9 , Curran Associates Inc., 2017: 5580-5590.
|
| [16] |
王若佳, 王继民. 用户认知视角下在线问诊平台医生推荐研究[J].图书情报工作,2023,67(10): 128-138.
|
|
Wang R J, Wang J M. Research on doctor recommendation of online “ask the doctor” platforms based on the perspective of users recognition[J]. Library and Information Service, 2023, 67(10): 128-138.
|
| [17] |
Huang Y F, Liu P, Pan Q, et al. A doctor recommendation algorithm based on doctor performances and patient preferences[C]//Proceedings of the 2012 International Conference on Wavelet Active Media Technology and Information Processing (ICWAMTIP), Chengdu December 17-19, IEEE, 2012: 92-95.
|
| [18] |
熊回香, 李晓敏, 李建玲. 基于医患交互数据的在线医生推荐研究[J]. 情报理论与实践, 2020, 43(8): 159-166.
|
|
Xiong H X, Li X M, Li J L. Research on online doctor recommendation based on doctor-patient interaction data[J]. Information Studies (Theory & Application), 2020, 43(8): 159-166.
|
| [19] |
Chen X, Liang Q, Chen Y, et al. Cognitive-based knowledge learning framework for recommendation[J]. Knowledge-Based Systems, 2024, 287: 111446.
|
| [20] |
Iftikhar H, Anwar S M, Majid M. A doctor recommendation system using patient’s satisfaction analysis[C]// Proceedings of Intelligent Technologies and Applications,Bahawalpur, Pakistan, November 6-8 , Springer Singapore, 2020: 201-209.
|
| [21] |
Xue F, He X, Wang X, et al. Deep item-based collaborative filtering for top-N recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): 1-25.
|
| [22] |
Liu K, Xue F, Guo D, et al. MEGCF: Multimodal entity graph collaborative filtering for personalized recommendation[J]. ACM Transactions on Information Systems, 2023, 41(2): 1-27.
|
| [23] |
杨善林, 李霄剑, 张强, 等. 人工智能与管理变革[J]. 中国管理科学, 2023, 31(6): 1-11.
|
|
Yang S L, Li X J, Zhang Q, et al. Artificial intelligence and management transformation[J]. Chinese Journal of Management Science, 2023, 31(6): 1-11.
|
| [24] |
Reyzin L. Unprovability comes to machine learning[J]. Nature, 2019, 565(7738): 166-167.
|
| [25] |
姚加权, 冯绪, 王赞钧, 等. 语调、情绪及市场影响: 基于金融情绪词典[J]. 管理科学学报, 2021, 24(5): 26-46.
|
|
Yao J Q, Feng X, Wang Z J, et al. Tone, sentiment and market impacts: The construction of Chinese sentiment dictionary in finance[J]. Journal of Management Sciences in China, 2021, 24(5): 26-46.
|
| [26] |
余艳, 张文, 熊飞宇, 等. 融合知识图谱与神经网络赋能数智化管理决策[J]. 管理科学学报, 2023, 26(5): 231-247.
|
|
Yu Y, Zhang W, Xiong F Y, et al. Fusion of knowledge graph and neural network to empower data-intelligence for management decisions[J].Journal of Management Sciences in China,2023,26(5): 231-247.
|
| [27] |
吴俊杰, 刘冠男, 王静远, 等. 数据智能: 趋势与挑战[J].系统工程理论与实践,2020, 40(8): 2116-2149.
|
|
Wu J J, Liu G N, Wang J Y, et al. Data intelligence: Trends and challenges[J]. Systems Engineering-Theory & Practice, 2020, 40(8): 2116-2149.
|
| [28] |
He X, Zemel R S, Carreira-Perpinan M A. Multiscale conditional random fields for image labeling[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, Washington,DC,USA,June 27-July 2, IEEE, 2004: 1315232.
|
| [29] |
Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning, NY, USA, June 19-24, JMLR.org, 2016: 1050-1059.
|
| [30] |
Gal Y, Ghahramani Z. A theoretically grounded application of dropout in recurrent neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, December 5-10 ,Curran Associates Inc.,2016: 1027-1035.
|
| [31] |
Zhang X, Mahadevan S. Bayesian neural networks for flight trajectory prediction and safety assessment[J]. Decision Support Systems, 2020, 131: 113246.
|
| [32] |
He X, Liao L, Zhang H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, April 3-7, IW3C2, 2017: 173-182.
|
| [33] |
国家医疗保障局. 国家医疗保障局关于积极推进“互联网+”医疗服务医保支付工作的指导意见[EB/OL].(2020-11-02)[2024-06-19]..
|
|
National Healthcare Security Administration. Guiding opinions of the national healthcare security administration on actively promoting the medical insurance payment for “Internet+” healthcare services[EB/OL]. (2020-11-02)[2024-06-19]..
|
| [34] |
Guo J, Tang Y, Han K, et al. Hire-MLP: Vision MLP via hierarchical rearrangement[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA June 18-24, IEEE, 2022: 816-826.
|
| [35] |
Long C, Yuan H, Fang J, et al. Learning global and multi-granularity local representation with MLP for sequential recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(4): 1-15.
|
| [36] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
| [37] |
Song Y, Shi S, Li J, et al. Directional skip-gram: Explicitly distinguishing left and Right Context for word embeddings[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,New Orleans,Louisiana, June 1-6 ,ACL,2018:175-180.
|
| [38] |
Gatzioura A, Vinagre J, Jorge A M, et al. A hybrid recommender system for improving automatic playlist continuation[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(5): 1819-1830.
|
| [39] |
Deshpande M, Karypis G. Item-based top-Nrecommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1): 143-177.
|
| [40] |
Xue H J, Dai X Y, Zhang J B, et al. Deep matrix factorization models for recommender systems[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, August, 19-25, AAAIPress, 2017: 3203-3209.
|
| [41] |
Robertson S E, Walker S. Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval[C]//Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin Ireland,July 3-6,Springer,1994:232-141.
|
| [42] |
Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco California USA, October 27- November 1, ACM, 2013: 2333-2338.
|
| [43] |
He X, Chen T, Kan M Y, et al. TriRank: Review-aware explainable recommendation by modeling aspects[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne Australia, October 18-23 ACM, 2015: 1661-1670.
|
| [44] |
Liu L, Özsu M T. Encyclopedia of Database Systems[M]. New York: Springer New York, 2009.
|