中国管理科学 ›› 2022, Vol. 30 ›› Issue (9): 49-60.doi: 10.16381/j.cnki.issn1003-207x.2019.1857cstr: 32146.14.j.cnki.issn1003-207x.2019.1857
张永1, 龙婉容1, 杨兴雨1, 张卫国2
收稿日期:2019-11-15
修回日期:2020-04-16
出版日期:2022-09-20
发布日期:2022-09-01
通讯作者:
杨兴雨(1981-),男(汉族),河南南阳人, 广东工业大学管理学院,教授, 博士,硕士生导师,研究方向:金融工程与在线金融决策,Email:yangxy@gdut.edu.cn.
E-mail:yangxy@gdut.edu.cn
基金资助:ZHANG Yong1, LONG Wan-rong1, YANG Xing-yu1, ZHANG Wei-guo2
Received:2019-11-15
Revised:2020-04-16
Online:2022-09-20
Published:2022-09-01
Contact:
杨兴雨
E-mail:yangxy@gdut.edu.cn
摘要: 弱集成算法是对专家意见进行动态加权平均的在线学习算法。近年来,机器学习和人工智能等方法被用来研究在线投资组合问题。该文从弱集成算法的在线学习及其序列决策性角度出发,设计改进的指数梯度在线投资组合策略,以弥补指数梯度在线投资组合策略不能结合交易费用进行分析的缺陷。首先根据指数梯度在线投资组合策略的更新方法构建代表投资策略的专家意见池,并以此为基础应用弱集成算法加权集成专家意见得到改进的指数梯度在线投资组合策略,证明了该策略可与最优专家策略(基准策略)相媲美。其次将交易费用引入到改进的指数梯度在线投资组合策略中,进一步给出对应的投资策略,重要的是理论上证明了该策略实现的平均累积收益与最优专家策略实现的平均累积收益之间的差值存在渐进式下界,从而提高了指数梯度在线投资组合策略的实用性。最后利用国内外股票市场的历史数据进行实证分析,说明了改进的指数梯度在线投资组合策略的可行性和有效性。
中图分类号:
张永,龙婉容,杨兴雨, 等. 基于在线算法的改进指数梯度投资组合策略[J]. 中国管理科学, 2022, 30(9): 49-60.
ZHANG Yong,LONG Wan-rong,YANG Xing-yu, et al. Improved Exponential Gradient Portfolio Strategy Based on Online Algorithm[J]. Chinese Journal of Management Science, 2022, 30(9): 49-60.
| [1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 7(1): 77-91. [2] 陈收, 杨宽, 廖懿, 等.证券市场中股票成交量对投资组合优化的影响[J].管理科学学报, 2002, 5(5): 6-10.Chen Shou, Yang Kuan, Liao Yi, et al. Trade volume’s impact on efficient frontier of portfolio selection[J].Journalof Management ScienceinChina, 2002, 5(5): 6-10. [3] Bielecki T R, Jin Hanqing, Pliska S R, etal. Continuous-time mean-variance portfolio selection with bankruptcy prohibition[J]. Mathematical Finance, 2005, 15(2): 213-244. [4] Basak S,Chabakauri G. Dynamic mean-variance asset allocation[J]. Review of Financial Studies, 2010, 23(8): 2970-3016. [5] 张鹏, 张卫国, 张逸菲.具有最小交易量限制的多阶段均值-半方差投资组合优化[J].中国管理科学, 2016, 24(7): 11-17.Zhang Peng, Zhang Weiguo, Zhang Yifei. Multi-period mean-semivarian ceport folio selection with minimum transactionlo tscons traints[J]. Chinese Journal of Management Science, 2016, 24(7): 11-17. [6] 李斌, 张迪, 冯佳捷.序列相关性在资产组合绩效改善中的作用[J].管理科学, 2018, 31(4): 148-160.Li Bin, Zhang Di, Feng Jiajie. The effect of serial dependence on improving portfolios’ performance[J]. Journal of Management Science, 2018, 31(4): 148-160. [7] 李爱忠, 汪寿阳, 彭月兰.考虑随机利率和通货膨胀的连续时间资产组合选择[J].中国管理科学, 2019, 27(2): 61-70.Li Aizhong, Wang Shouyang, Peng Yuelan. Continuous-time asset allocation strategy with inflation and stochastic interest rates[J]. Chinese Journal of Management Science, 2019, 27(2): 61-70. [8] Cover T M. Universal portfolios[J]. Mathematical Finance, 1991, 1(1): 1-29. [9] 李斌, 张迪, 唐松慧.基于次梯度投影的泛投资组合选择策略[J].管理科学学报, 2018, 21(3): 94-104.Li Bin, Zhang Di, Tang Songhui. Universal portfolio selection strategy based on sub-gradient projection[J]. Journal of Management Sciences in China, 2018, 21(3): 94-104. [10] O’ Sullivan P, Edelman D. Adaptive universal portfolios[J]. European Journal of Finance, 2015, 21(4): 337-351. [11] Hazan E, Kale S. An online portfolio selection algorithm with regret logarithmic in price variation[J]. Mathematical Finance, 2015, 25(2): 288-310. [12] Borodin A, El-Yaniv R, Gogan V. Can we learn to beat the best stock[J]. Journal of Artificial Intelligence Research, 2004, 21: 579-594. [13] Li Bin, Zhao Peilin, Hoi S C H, et al. PAMR: Passive aggressive mean reversion strategy for portfolio selection[J]. Machine Learning, 2012, 87(2): 221-258. [14] Li Bin, Hoi S C H, Zhao Peilin, et al. Confidence weighted mean reversion strategy for online portfolio selection[J]. ACM Transactions on Knowledge Discovery from Data, 2013, 7(1): 4:1-4:38. [15] Li Bin, Hoi S C H, Sahoo D, et al. Moving average reversion strategy for on-line portfolio selection[J]. Artificial Intelligence, 2015, 222: 104-123. [16] Huang Dingjiang, Yu Shunchang, Li Bin, et al. Combination forecasting reversion strategy for online portfolio selection[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(5): 58:1-58:22. [17] Chu Gang, Zhang Wei, Sun Guofeng, et al. A new online portfolio selection algorithm based on kalman filter and anti-correlation[J]. Physica A, 2019, DOI:10.1016/j.physa.2019.04.185. [18] Helmbold D P, Schapir R E, Singer Y, et al. On-line portfolio selection using multiplicative updates[J]. Mathematical Finance, 1998, 8(4): 325-347. [19] 彭子衿, 徐维军.基于股价预测的泛证券投资组合策略[J].中国管理科学, 2018, 26(9): 1-10.Peng Zijin, Xu Weijun. Universal portfolio strategy based on forecasting price[J]. Chinese Journal of Management Science, 2018, 26(9): 1-10. [20] Zhang Weiguo, Zhang Yong, Yang Xingyu, et al. A class of on-line portfolio selection algorithms based on linear learning[J]. Applied Mathematics and Computation, 2012, 218(24): 11832-11841. [21] Guan Hao, An Zhiyong. A local adaptive learning system for online portfolio selection[J]. Knowledge-Based Systems, 2019, 186(15): 104958.1-104958.10. [22] Li Bin, Hoi S C H, Gopalkrishnan V. CORN: Correlation-driven nonparametric learning approach for portfolio selection[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 21:1-21:29. [23] Blum A, Kalai A. Universal portfolios with and without transaction costs[J]. Machine Learning, 1999, 35(3): 193-205. [24] 刘善存, 邱菀华, 汪寿阳.带交易费用的泛证券组合投资策略[J].系统工程理论与实践, 2003, 23(1): 22-25.Liu Shancun, Qiu Wanhua, Wang Shouyang. Universal portfolio selection with transaction costs[J]. Systems Engineering-Theory & Practice, 2003, 23(1): 22-25. [25] Tunc S, Donmez M A, Kozat S S. Optimal investment under transaction costs: A threshold rebalanced portfolio approach[J]. IEEE Transactions on Signal Processing, 2013, 61(12): 3129-3142. [26] Albeverio S, Lao Lanjun, Zhao Xuelei. On-line portfolio selection strategy with prediction in the presence of transaction costs[J]. Mathematical Methods of Operations Research, 2001, 54(1): 133-161. [27] Li Bin, Wang Jialei, Huang Dingjiang, et al. Transaction cost optimization for online portfolio selection[J]. Quantitative Finance, 2017, 18(8): 1411-1424. [28] Kalnishkan Y, Vyugin M V. The weak aggregating algorithm and weak mixability[J]. Journal of Computer and System Sciences, 2008, 74(8): 1228-1244. [29] Levina T, Levin Y, Mcgill J, et al. Weak aggregating algorithm for the distribution-free perishable inventory problem[J]. Operations Research Letters, 2010, 38(6): 516-521. [30] 张永, 张卫国, 徐维军, 等.集成有限个专家意见的在线投资组合策略[J].系统工程理论与实践, 2015, 35(1): 57-66.Zhang Yong, Zhang Weiguo, Xu Weijun, et al. Online portfolio selection strategy by aggregating finite expert advices[J]. Systems Engineering-Theory & Practice, 2015, 35(1): 57-66. [31] 杨兴雨, 刘悦, 杨晓光, 等.带交易费用的集成专家意见在线投资组合策略[J].系统工程理论与实践, 2018, 38(8): 1946-1959.Yang Xingyu, Liu Yue, Yang Xiaoguang, et al. Online portfolio selection strategy of aggregating expert advice with transaction costs[J]. Systems Engineering-Theory & Practice, 2018, 38(8): 1946-1959. |
| [1] | 罗鹏飞, 姚彦铭, 谭英贤. 突发公共卫生事件下企业委托代理问题与最优资本结构[J]. 中国管理科学, 2025, 33(10): 47-56. |
| [2] | 叶彦艺, 杨晓光. 股票市场知情交易如何影响信用债利差[J]. 中国管理科学, 2025, 33(9): 1-10. |
| [3] | 甘柳, 蔡颖俐, 徐明玉, 谭英贤. 二级债券市场信息获取与可转债融资[J]. 中国管理科学, 2025, 33(9): 22-32. |
| [4] | 姚银红, 王晓旭, 陈炜, 陈振松. 基于Transformer-LSTM分位数回归的全球股市极端风险溢出研究[J]. 中国管理科学, 2025, 33(8): 1-13. |
| [5] | 吴伟平, 林雨, 金成能, 唐振鹏. 随机市场深度下基于风险管理和交易约束的最优执行问题[J]. 中国管理科学, 2025, 33(8): 14-25. |
| [6] | 颜镜洲, 李仲飞, 毛杰, 李星毅. 模糊波动下的策略交易和市场质量[J]. 中国管理科学, 2025, 33(8): 26-36. |
| [7] | 张维, 陈卓, 冯绪, 熊熊, 张永杰. 金融系统工程在中国:2010-2024[J]. 中国管理科学, 2025, 33(7): 11-23. |
| [8] | 田军, 董赞强, 李雅丽. 基于预付账款融资模式的供应链融资策略研究[J]. 中国管理科学, 2025, 33(7): 272-283. |
| [9] | 罗鹏飞, 刘新乐, 陆婷, 张勇. 碳减排下的企业并购决策[J]. 中国管理科学, 2025, 33(7): 337-345. |
| [10] | 杨科, 刘鑫, 田凤平. 中国与其他主要新兴市场国家间股市极端风险的跨市场传染[J]. 中国管理科学, 2025, 33(7): 44-53. |
| [11] | 文璐, 冯玲. 动态政府干预下银行风险传染与最优救助决策研究[J]. 中国管理科学, 2025, 33(6): 37-48. |
| [12] | 欧阳资生, 周学伟. 中国金融机构系统性风险回测与关联研究[J]. 中国管理科学, 2025, 33(6): 14-26. |
| [13] | 赵志明, 潘琼. 债权激励对公司再融资的影响研究[J]. 中国管理科学, 2025, 33(6): 27-36. |
| [14] | 谭春萍, 秦学志, 尚勤, 王文华, 林先伟. 企业财务困境的激励相容式组合纾解策略[J]. 中国管理科学, 2025, 33(5): 13-25. |
| [15] | 于辉, 王霜. 供应链金融:企业如何实现“鱼与熊掌”兼得?[J]. 中国管理科学, 2025, 33(5): 280-289. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||