中国管理科学 ›› 2022, Vol. 30 ›› Issue (10): 72-84.doi: 10.16381/j.cnki.issn1003-207x.2020.0402cstr: 32146.14.j.cnki.issn1003-207x.2020.0402
谢文浩, 曹广喜
收稿日期:2020-03-12
修回日期:2020-06-18
出版日期:2022-10-20
发布日期:2022-10-12
通讯作者:
曹广喜(1976-),男(汉族),江苏淮安人,南京信息工程大学管理工程学院,教授,博士生导师,研究方向:金融工程,Email:caoguangxi@nuist.edu.cn.
E-mail:caoguangxi@nuist.edu.cn
基金资助:XIE Wen-hao, CAO Guang-xi
Received:2020-03-12
Revised:2020-06-18
Online:2022-10-20
Published:2022-10-12
Contact:
曹广喜
E-mail:caoguangxi@nuist.edu.cn
摘要: 加密货币这一新兴的金融市场目前引起了学者的广泛关注。本文主要基于多重分形降趋移动平均交叉相关分析法(MFXDMA),以4类加密货币(比特币、以太坊、瑞波币和莱特币)、上证指数和恒生指数为研究对象,实证分析了加密货币单一市场、交叉市场间收益率的多重分形特征,以及加密货币和上证指数、恒生指数交叉相关性的多重分形特征。实证结果表明,比特币、以太坊、瑞波币和莱特币各单独市场的收益率具有长记忆性、非对称的多重分形特征。4个加密货币市场中以太坊的市场效率最强,而比特币的市场效率最弱。加密货币市场对内地股市和香港股市产生了一定影响,市场间的交叉相关持续性增强。通过对比特币、比特币和以太坊交叉市场采用中心和前向移动平均法进行对比分析,实验表明本文使用后向移动平均法的结果是稳健的。最后通过滑动窗技术,研究了单一市场和跨市场相关性、波动函数的时变特征,结果表明比特币和以太坊,上证指数和恒生指数时变特征具有一定的相似性,并且上证指数比恒生指数更易受加密货币市场的影响。
中图分类号:
谢文浩,曹广喜. 基于MFXDMA方法的加密货币和中国股市间的多重分形交叉相关性研究[J]. 中国管理科学, 2022, 30(10): 72-84.
XIE Wen-hao,CAO Guang-xi. Multifractal Cross-Correlation between Cryptocurrency and Chinese Stock Market Based on MFXDMA Method[J]. Chinese Journal of Management Science, 2022, 30(10): 72-84.
| [1] 谢平,石午光.数字加密货币研究:一个文献综述[J].金融研究,2015,429(1):1-15.Xie Ping,Shi Wuguang. A literature review of cryptocurrency[J]. Journal of Financial Research, 2015,429(1): 1-15. [2] Katsiampa P, Corbet S, Lucey B. Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis[J]. Finance Research Letters, 2019, 29: 68-74. [3] Koutmos D. Return and volatility spillovers among cryptocurrencies[J]. Economics Letters, 2018, 173: 122-127. [4] Corbet S, Meegan A, Larkin C, et al. Exploring the dynamic relationships between cryptocurrencies and other financial assets[J]. Economics Letters, 2018, 165: 28-34. [5] Gil-Alana L A, Abakah E J A, Rojo M F R. Cryptocurrencies and stock market indices. Are they related?[J]. Research in International Business and Finance, 2020, 51: 101063. [6] Kristjanpoller W, Bouri E, Takaishi T. Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis[J]. Physica A: Statistical Mechanics and its Applications, 2020,545: 123711. [7] Ferreira P, Kristoufek L, Pereira E J A L. DCCA and DMCA correlations of cryptocurrency markets[J]. Physica A: Statistical Mechanics and its Applications, 2020,545: 123803. [8] Urquhart A. Price clustering in Bitcoin[J]. Economics letters, 2017, 159: 145-148. [9] Bouri E, Gil-Alana L A, Gupta R, et al. Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks[J]. International Journal of Finance & Economics, 2019, 24(1): 412-426. [10] Lahmiri S, Bekiros S. Chaos, randomness and multi-fractality in Bitcoin market[J]. Chaos, solitons & fractals, 2018, 106: 28-34. [11] Urquhart A. The inefficiency of Bitcoin[J]. Economics Letters, 2016, 148: 80-82. [12] Jiang Yonghong, Nie He, RuanWeihua. Time-varying long-term memory in Bitcoin market[J]. Finance Research Letters, 2018, 25: 280-284. [13] Caporale G M, Zekokh T. Modelling volatility of cryptocurrencies using Markov-Switching GARCH models[J]. Research in International Business and Finance, 2019, 48: 143-155. [14] Cheah E T, Fry J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin[J]. Economics Letters, 2015, 130: 32-36. [15] Jakub B. Does Bitcoin follow the hypothesis of efficient market?[J]. International Journal of Economic Sciences, 2015, 4(2): 10-23. [16] Kurihara Y, Fukushima A. The market efficiency of Bitcoin: A weekly anomaly perspective[J]. Journal of Applied Finance and Banking, 2017, 7(3): 57-64. [17] Gajardo G, Kristjanpoller W D, Minutolo M. Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?[J]. Chaos, Solitons & Fractals, 2018, 109: 195-205. [18] Al-Yahyaee K H, Mensi W, Yoon S M. Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets[J]. Finance Research Letters, 2018, 27: 228-234. [19] Jiang Zhiqiang, Zhou Weixing. Multifractal detrending moving-average cross-correlation analysis[J]. Physical Review E, 2011, 84(1): 016106. [20] 周伟杰,党耀国,顾荣宝.基于灰色算子的分形法及应用[J].中国管理科学,2017,25(10):89-99.Zhou Weijie, Dang Yaoguo, Gu Rongbao. The modified fractal methods based on the grey operator and their application[J]. Chinese Journal of Management Science, 2017, 25(10): 89-99. [21] Wang Jing, Shang Pengjian, Ge Weijie. Multifractalcross-correlation analysis based on statistical moments[J]. Fractals, 2012, 20: 271-279. [22] 祁明,肖林.虚拟货币:运行机制、交易体系与治理策略[J].中国工业经济,2014(4):110-122.Qi Ming, Xiao Lin. Network virtual currency: Operation mechanism, trading system and governance strategy[J]. China Industrial Economics, 2014(4):110-122. [23] 姚前.共识规则下的货币演化逻辑与法定数字货币的人工智能发行[J].金融研究,2018,432(9):37-55.Yao Qian. Currency evolution logic under consensus mechanism and digital fiat currency issuance based on artificial intelligence[J]. Journal of Financial Research, 2018,432(9): 37-55. [24] 刘刚,刘娟,唐婉容.比特币价格波动与虚拟货币风险防范——基于中美政策信息的事件研究法[J].广东财经大学学报,2015,30(3):30-40.Liu Gang, Liu Juan, Tang Wanrong. Bitcoin price volatility and virtual currency risk control: An event study analysis based on the sino-us policy information[J]. Journal of Guangdong University of Finance and Economics, 2015, 30(3): 30-40. [25] 潘慧峰,蔡显军,孙伟,等.数字货币市场是否达到了弱式有效?——基于广义谱方法的检验[J].科学决策,2019(5):1-13.Pan Huifeng, Cai Xianjun, Sun Wei, et al. Have cryptocurrency markets reached weak-form efficiency? A generalized spectral approach[J]. Scientific Decision Making, 2019(5): 1-13. [26] 邓伟.比特币价格泡沫:证据、原因与启示[J].上海财经大学学报,2017,19(2):50-62.Deng Wei. Price bubbles in Bitcoin: Evidence,causes and implications[J]. Journal of Shanghai University of Finance and Economics, 2017, 19(2): 50-62. [27] 刘力臻,王庆龙.基于模仿传染模型的比特币羊群效应分析[J].北京邮电大学学报(社会科学版),2015,17(2):27-33.Liu Lizhen,Wang Qinglong. Analysis of Bitcoin herd behavior based on imitation and infection model[J].Journal of Beijing University of Posts and Telecommunications(Social Sciences Edition), 2015, 17(2): 27-33. [28] Zunino L, Tabak B M, Figliola A, et al. A multifractal approach for stock market inefficiency[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(26): 6558-6566. [29] Wang Yudong, Liu Li, Gu Rongbao. Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis[J]. International Review of Financial Analysis, 2009, 18(5): 271-276. |
| [1] | 罗鹏飞, 姚彦铭, 谭英贤. 突发公共卫生事件下企业委托代理问题与最优资本结构[J]. 中国管理科学, 2025, 33(10): 47-56. |
| [2] | 叶彦艺, 杨晓光. 股票市场知情交易如何影响信用债利差[J]. 中国管理科学, 2025, 33(9): 1-10. |
| [3] | 甘柳, 蔡颖俐, 徐明玉, 谭英贤. 二级债券市场信息获取与可转债融资[J]. 中国管理科学, 2025, 33(9): 22-32. |
| [4] | 姚银红, 王晓旭, 陈炜, 陈振松. 基于Transformer-LSTM分位数回归的全球股市极端风险溢出研究[J]. 中国管理科学, 2025, 33(8): 1-13. |
| [5] | 吴伟平, 林雨, 金成能, 唐振鹏. 随机市场深度下基于风险管理和交易约束的最优执行问题[J]. 中国管理科学, 2025, 33(8): 14-25. |
| [6] | 颜镜洲, 李仲飞, 毛杰, 李星毅. 模糊波动下的策略交易和市场质量[J]. 中国管理科学, 2025, 33(8): 26-36. |
| [7] | 张维, 陈卓, 冯绪, 熊熊, 张永杰. 金融系统工程在中国:2010-2024[J]. 中国管理科学, 2025, 33(7): 11-23. |
| [8] | 田军, 董赞强, 李雅丽. 基于预付账款融资模式的供应链融资策略研究[J]. 中国管理科学, 2025, 33(7): 272-283. |
| [9] | 罗鹏飞, 刘新乐, 陆婷, 张勇. 碳减排下的企业并购决策[J]. 中国管理科学, 2025, 33(7): 337-345. |
| [10] | 杨科, 刘鑫, 田凤平. 中国与其他主要新兴市场国家间股市极端风险的跨市场传染[J]. 中国管理科学, 2025, 33(7): 44-53. |
| [11] | 文璐, 冯玲. 动态政府干预下银行风险传染与最优救助决策研究[J]. 中国管理科学, 2025, 33(6): 37-48. |
| [12] | 欧阳资生, 周学伟. 中国金融机构系统性风险回测与关联研究[J]. 中国管理科学, 2025, 33(6): 14-26. |
| [13] | 赵志明, 潘琼. 债权激励对公司再融资的影响研究[J]. 中国管理科学, 2025, 33(6): 27-36. |
| [14] | 谭春萍, 秦学志, 尚勤, 王文华, 林先伟. 企业财务困境的激励相容式组合纾解策略[J]. 中国管理科学, 2025, 33(5): 13-25. |
| [15] | 于辉, 王霜. 供应链金融:企业如何实现“鱼与熊掌”兼得?[J]. 中国管理科学, 2025, 33(5): 280-289. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||