中国管理科学 ›› 2020, Vol. 28 ›› Issue (10): 24-35.doi: 10.16381/j.cnki.issn1003-207x.2020.10.003cstr: 32146.14.j.cnki.issn1003-207x.2020.10.003
朱鹏飞1,2,3, 唐勇1,2,3, 钟莉1,2
收稿日期:2018-08-05
修回日期:2018-11-26
出版日期:2020-10-20
发布日期:2020-11-11
通讯作者:
唐勇(1970-),男(汉族),江苏淮安人,福州大学经济与管理学院,教授,博士生导师,研究方向:金融工程与风险管理,E-mail:tangyong2018@126.com.
E-mail:tangyong2018@126.com
基金资助:ZHU Peng-fei1,2,3, TANG Yong1,2,3, ZHONG Li1,2
Received:2018-08-05
Revised:2018-11-26
Online:2020-10-20
Published:2020-11-11
摘要: 考虑到投资者异质性特征,将极大重叠离散小波变换方法与高阶矩投资组合框架相结合,提出小波-高阶矩投资组合模型,在此基础上提出频域视角下的高频尺度集成方案和时-频域视角下的全尺度集成方案,并遴选出合适的风险偏好特征改进模型,最后进行稳定性检验。基于国际原油市场数据,样本外检验结果表明:相较于对照组,大部分的小波-高阶矩投资组合策略均取得了更优的投资效果,其中集成部分表现最佳,且高频尺度集成方案侧重于提升收益,而全尺度集成方案侧重于降低波动;通过选择合适偏好高阶矩风险的特征,将会明显改善原始小波-高阶矩投资组合策略,且对两个集成方案改良效果最显著;稳健性检验证实了以上结论。
中图分类号:
朱鹏飞,唐勇,钟莉. 基于小波-高阶矩模型的投资组合策略——以国际原油市场为例[J]. 中国管理科学, 2020, 28(10): 24-35.
ZHU Peng-fei,TANG Yong,ZHONG Li. Portfolio Strategy Based on Wavelet-High Order Moments model-Take the International Crude Oil Markets as An Research Objects[J]. Chinese Journal of Management Science, 2020, 28(10): 24-35.
| [1] Ding Zhihua, Liu Zhenhua, Zhang Yuejun, et al. The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment[J]. Applied Energy, 2017, 187(1):27-36. [2] Huang Shupei, An Haizhong, Huang Xuan, et al. Co-movemet of coherence between oil prices and the stock market from the joint time-frequency perspective[J].Applied Energy, 2018, 221(7):122-130. [3] 潘伟, 王凤侠, 吴婷. 不同突发事件下进口原油采购策略[J].中国管理科学,2016,24(7):27-35. [4] Jain A, Biswal P C. Dynamic linkages among oil price, gold price, exchange rate, and stock market in India[J].Resources Policy, 2016, 49(9):179-185. [5] 赵鲁涛, 李婷,张跃军, 等. 基于Copula-VaR的能源投资组合价格风险度量研究[J].系统工程理论与实践,2015, 35(3):771-779. [6] Markowitz H M. Portfolio selection[J]. Finance, 1952, 7(3):77-91. [7] 李爱忠, 任若恩, 董纪昌. 基于集成预测的均值-方差-熵的模糊投资组合选择[J].系统工程理论与实践, 2013, 33(5):1116-1125. [8] Qin Zhongfeng. Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns[J]. European Journal of Operational Research, 2015, 245(2):480-488. [9] 黄金波, 李仲飞, 丁杰. 基于非参数核估计方法的均值-VaR模型[J]. 中国管理科学, 2017, 25(5):1-10. [10] Zhou Ke, Gao Jiangjun, Li Duan, et al. Dynamic mean-VaR portfolio selection in continuous time[J]. Quantitative Finance, 2017, 17(10):1-13. [11] Krokhmal P,Palmquist J, Uryasev S. Portfolio optimization with conditional value-at-Risk objective and constraints[J]. Journal of Risk, 2003,(4):11-27. [12] 张冀, 谢远涛, 杨娟. 风险依赖、一致性风险度量与投资组合-基于Mean-Copula-CVaR的投资组合研究[J]. 金融研究, 2016,(10):159-173. [13] Liu L, Shi L, Wen Y, et al.Pension fund portfolio based on CVaR-copula[J]. Boletin Tecnico/technical Bulletin, 2017, 55(12):556-563. [14] Maringer D, Parpas P. Global optimization of higher order moments in portfolio selection[J]. Journal of Global Optimization, 2009, 43(2-3):219-230. [15] 黄金波, 李仲飞, 丁杰. 基于CVaR的基金业绩测度研究[J].管理评论, 2018, 30(4):20-32. [16] Lai K K, Yu L, Wang S. Mean-variance-skewness-kurtosis-based portfolio optimization[J]. International Multi-symposiums on Computer & Computational Sciences, 2006, 2(6):292-297. [17] 蒋翠侠, 许启发, 张世英. 基于多目标优化和效用理论的高阶矩动态组合投资[J]. 统计研究, 2009, 26(10):73-80. [18] Martellini L, Ziemann V. Improved estimates of higher-order comoments and implications for portfolio selection[J]. Review of Financial Studies, 2010, 23(4):1467-1502. [19] Nguyen T T. Portfolio selection under higher moments using fuzzy multi-objective linear programming[J]. Journal of Intelligent & Fuzzy Systems, 2016, 30(4):2139-2156. [20] Chen Wei, Wang Yun, Zhang Jun, et al. Uncertain portfolio selection with high-order moments[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(3):1-15. [21] Huang Shupei, An Haizhong, Gao Xiangyun, et al. Time-frequency featured co-movement between the stock and prices of crude oil and gold[J]. Physica A, 2016, 444(15):985-995. [22] Jammazi R, Reboredo J C. Dependence and risk management in oil and stock markets. A wavelet-copula analysis[J]. Energy, 2016, 107(15):866-888. [23] Wang Gangjin, Xie Chi, Chen Shou. Multiscale correlation networks analysis of the US stock market:A wavelet analysis[J]. Journal of Economic Interaction & Coordination, 2017, 12(3):1-34. [24] Jena S K, Tiwari A K, Roubaud D. Comovements of gold futures markets and the spot market:A wavelet analysis[J]. Finance Research Letters, 2018, 24(3):19-24. [25] 王莹. 全球外汇市场网络结构、货币影响力与货币社区[J].世界经济研究,2018,(2):38-51+134-135. [26] Zhang X,Lai K K, Wang S. A new approach for crude oil price analysis based on Empirical Mode Decomposition[J]. Energy Economics, 2008, 30(3):905-918. [27] Li Fangfang,Wang Siya, Wei Jiahua. Long term rolling prediction model for solar radiation combining empirical mode decomposition (EMD) and artificial neural network (ANN) techniques[J]. Journal of Renewable & Sustainable Energy, 2018, 10(1):013704. [28] Silvo D. The dynamics of return comovement and spillovers between the czech and european stock markets in the period 1997-2010[J]. Finance a úvěr-Czech Journal of Economics and Finance, 2012, 62(4):368-390. [29] Deora R, Nguyen D K. Time-scale comovement between the Indian and world stock markets[J]. Working Papers, 2013, 29(3):765-776. [30] Chen M P, Chen W Y, Tseng T C. Co-movements of returns in the health care sectors from the US, UK, and Germany stock markets:Evidence from the continuous wavelet analyses[J]. International Review of Economics & Finance, 2017, 49(3):484-498. [31] 张世英, 樊智, 郭名媛. 协整理论与波动模型:金融时间序列分析及应用(第3版)[M].北京:清华大学出版社, 2014. [32] Maharaj E A. Wavelet timescales and conditional relationship between higher-order systematic co-moments and portfolio returns[J]. Quantitative Finance, 2008, 8(2):201-215. [33] Berger T, Fieberg C. On portfolio optimization:forecasting asset covariances and variances based on multi-scale risk models[J]. The Journal of Risk Finance, 2016, 17(3):295-309. [34] Li Shiyun. Volatility spillovers in the CSI300 futures and spot markets in China:empirical study based on discrete wavelet transform and VAR-BEKK-bivariate GARCH Model[J]. Procedia Computer Science, 2015, 55(7):380-387. [35] 熊正德, 文慧, 熊一鹏.我国外汇市场与股票市场间波动溢出效应实证研究-基于小波多分辨的多元BEKK-GARCH(1,1)模型分析[J].中国管理科学,2015,23(4):30-38. [36] 于孝建, 王秀花, 徐维军. 基于滚动经济回撤约束和下半方差的最优投资组合策略[J]. 系统工程理论与实践,2018,38(3):545-555. [37] Shiller R J. Irrational exuberance 3rd edition[M]. Princeton:Princeton University Press, 2005. [38] 叶青, 韩立岩. 基于小波分析研究美国次贷危机在全球股票市场中的传染[J].系统工程,2011,29(5):23-30. [39] Gunay S. Are the scaling properties of bull and bear markets identical? Evidence from oil and gold markets. Int[J]. Financial Stud, 2014,2(4):315-334. [40] Berger T, Fieberg C. On portfolio optimization:forecasting asset covariances and variances based on multi-scale risk models[J]. The Journal of Risk Finance, 2016, 17(3):295-309. |
| [1] | 姚银红, 王晓旭, 陈炜, 陈振松. 基于Transformer-LSTM分位数回归的全球股市极端风险溢出研究[J]. 中国管理科学, 2025, 33(8): 1-13. |
| [2] | 吴伟平, 林雨, 金成能, 唐振鹏. 随机市场深度下基于风险管理和交易约束的最优执行问题[J]. 中国管理科学, 2025, 33(8): 14-25. |
| [3] | 田军, 董赞强, 李雅丽. 基于预付账款融资模式的供应链融资策略研究[J]. 中国管理科学, 2025, 33(7): 272-283. |
| [4] | 杨科, 刘鑫, 田凤平. 中国与其他主要新兴市场国家间股市极端风险的跨市场传染[J]. 中国管理科学, 2025, 33(7): 44-53. |
| [5] | 欧阳资生, 周学伟. 中国金融机构系统性风险回测与关联研究[J]. 中国管理科学, 2025, 33(6): 14-26. |
| [6] | 沈根祥, 周泽峰. 拟得分驱动条件异方差自回归极差模型及其实证研究[J]. 中国管理科学, 2025, 33(5): 34-44. |
| [7] | 冯浩原, 吴颉, 于安琪, 郭琨. 杠杆交易会提高股票市场的流动性吗?——基于微观个股层面的实证分析[J]. 中国管理科学, 2025, 33(4): 1-11. |
| [8] | 姚海祥, 刘秋瑜, 杨晓光. 增强还是减弱:新型金融与传统金融行业之间系统性风险溢出[J]. 中国管理科学, 2025, 33(3): 1-12. |
| [9] | 王纲金, 马欣宇, 谢赤. 基于尾部风险溢出网络的全球外汇市场关联性研究[J]. 中国管理科学, 2025, 33(3): 13-23. |
| [10] | 许帅, 邵帅, 何贤杰. 业绩说明会前瞻性信息对分析师盈余预测准确性的影响[J]. 中国管理科学, 2025, 33(3): 34-44. |
| [11] | 孙庆文, 靳玉, 郑立梅, 孙子涵. 企业净资产收益率操纵度量模型与识别方法[J]. 中国管理科学, 2025, 33(2): 1-15. |
| [12] | 胡玉真, 刘建霞. 基于消冗时段网络的集装箱班轮干扰恢复研究[J]. 中国管理科学, 2025, 33(2): 118-130. |
| [13] | 马梦迪, 李烁, 王玉涛. 中国分析师报告有效性研究:特定信息与投资者有限关注[J]. 中国管理科学, 2025, 33(2): 38-49. |
| [14] | 宋诗佳, 田飞, 李汉东. 基于时变极值方法的VaR预测模型以及应用[J]. 中国管理科学, 2025, 33(2): 61-70. |
| [15] | 李星毅, 李仲飞, 李其谦, 刘昱君, 唐文金. 基于机器学习的资产收益率预测研究综述[J]. 中国管理科学, 2025, 33(1): 311-322. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||