主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2025, Vol. 33 ›› Issue (12): 41-56.doi: 10.16381/j.cnki.issn1003-207x.2024.2305cstr: 32146.14.j.cnki.issn1003-207x.2024.2305

• • 上一篇    下一篇

黄金价格的混合多元回归预测研究:基于分解-重构-集成方法论

黄兆荣1, 宋正阳1, 杨博1,2, 曾能民3,4, 余乐安1,2()   

  1. 1.四川大学商学院,四川 成都 610065
    2.科技金融四川省重点实验室(四川大学),四川 成都 610065
    3.哈尔滨工程大学经济管理学院,黑龙江 哈尔滨 150001
    4.大数据与商务智能技术工业和信息化部重点实验室(哈尔滨工程大学),黑龙江 哈尔滨 150001
  • 收稿日期:2024-12-19 修回日期:2025-05-17 出版日期:2025-12-25 发布日期:2025-12-25
  • 通讯作者: 余乐安 E-mail:yulean@amss.ac.cn
  • 基金资助:
    国家自然科学基金重点项目(72331007)

Hybrid Multivariate Regression Forecasting for Gold Prices: A Decomposition-Reconstruction-Ensemble Methodology

Zhaorong Huang1, Zhengyang Song1, Bo Yang1,2, Nengmin Zeng3,4, Le’an Yu1,2()   

  1. 1.Business School,Sichuan University,Chengdu 610065,China
    2.Technology Finance Key Laboratory of Sichuan Province,Sichuan University,Chengdu 610065,China
    3.School of Economics and Management,Harbin Engineering University,Harbin 150001,China
    4.Key Laboratory of Big Data and Business Intelligence Technology (Harbin Engineering University),Ministry of Industry and Information Technology,Harbin 150001,China
  • Received:2024-12-19 Revised:2025-05-17 Online:2025-12-25 Published:2025-12-25
  • Contact: Le’an Yu E-mail:yulean@amss.ac.cn

摘要:

黄金资产的价格形成机制错综复杂,难以通过单变量时间序列分析框架全面揭示其内在特征空间中所蕴含的丰富多维信息。为此,本文基于分解-重构-集成思想,提出一种稳健分解和分层集成策略的混合回归模型用于黄金价格预测,有效地挖掘多种金融影响因素在不同时间尺度间的协同作用。首先,开发了一种稳定变分模式分解(stable variational mode decomposition, SVMD)技术,以提取黄金价格序列的稳定中心频率分量边界,用于连续的特征学习。接着,运用Hurst指数作为记忆性重构指标,将分解分量重构成短期、中期和长期尺度分量。其次,利用缩放主成分分析回归和最小最大凹度惩罚回归的特征选择优势构建混合线性回归(hybrid linear regression, HLR)模型,在不同时间尺度上提取重要金融特征用于预测,从而提高整体预测泛化能力。最后,分层集成方法将原始层、重构层和分量层的预测结果进行综合,得到调和的黄金价格预测值。该模型采用两个国际黄金价格数据进行实证分析,研究结果验证了所提出的模型在分解、重构和集成三个步骤的有效性,并且,对比已有研究的多种预测模型和分解建模策略验证了所提出模型的优势。

关键词: 黄金价格预测, 混合线性模型, 分解集成, 变分模态分解, 分层集成

Abstract:

The pricing mechanism of gold assets is particularly complex, and it is difficult to fully reveal the rich multidimensional information contained in its inherent feature space through a univariate time series analysis framework. A hybrid regression model with robust decomposition and hierarchical integration strategies for gold price prediction is proposed from the perspective of decomposition-reconstruction-ensemble, effectively exploring the synergistic effects of mixed financial influencing factors at different time scales. Firstly, a stable variational mode decomposition (SVMD) technique is developed to extract the stable center frequency component boundaries of the gold price sequence for continuous feature learning. Then, using the Hurst exponent as a memory reconstruction index, the decomposition boundary is reconstructed into short-term, medium-term, and long-term scale components. Subsequently, utilizing the advantages of feature selection from scaled principal component analysis regression and minimum maximum concavity penalty regression, a hybrid linear regression (HLR) is constructed to extract important financial features for prediction at different time scales, thereby improving the overall prediction generalization ability. Finally, the hierarchical ensemble method integrated the prediction results of the original layer, reconstruction layer, and component layer to obtain a reconciliatory gold price prediction value. The effectiveness of the proposed model in the three steps of decomposition, reconstruction, and ensemble is validated on the international gold futures price dataset, and the advantages of the proposed model are compared with various prediction models and decomposition modeling strategies in existing research.

Key words: gold price prediction, hybrid regression model, decomposition and ensemble, variational mode decomposition, hierarchical ensemble

中图分类号: