| [1] |
宋江海, 池宏, 高敏刚. 航空公司机上周转品多基地库存优化模型[J].中国管理科学,2019,27(2): 119-128.
|
|
Song J H, Chi H, Gao M G. Optimization model of airline in-flight reusable items inventory in multi-base system[J]. Chinese Journal of Management Science, 2019, 27(2): 119-128.
|
| [2] |
飞常准大数据. 2022年上半年全球民航航班运行报告[EB/OL].(2022-07-10) [2023-09-01] .
|
|
VariFlight. Global civil aviation flight operations report for the first half of 2022[EB/OL].(2022-07-10) [2023-09-01]..
|
| [3] |
民航资源网. 2017年全国民航摘要运输指标统计[EB/OL].(2018-01-10)[2023-09-01]..
|
|
Civil Aviation Resource Net. 2017 national civil aviation abstract transportation index statistics[EB/OL]. (2018-01-10) [2023-09-01]. .
|
| [4] |
Teodorović D, Guberinić S. Optimal dispatching strategy on an airline network after a schedule perturbation[J]. European Journal of Operational Research, 1984, 15(2): 178-182.
|
| [5] |
Liang Z, Xiao F, Qian X, et al. A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility[J]. Transportation Research Part B: Methodological, 2018, 113: 70-90.
|
| [6] |
田倩南, 李昆鹏, 李文莉, 等. 基于改进列生成算法的受扰航班优化调度[J]. 系统工程理论与实践, 2019, 39(11): 2815-2827.
|
|
Tian Q N, Li K P, Li W L, et al. Optimization operation of disrupted flights by improving column generation algorithm[J]. Systems Engineering-Theory & Practice, 2019, 39(11): 2815-2827.
|
| [7] |
Lee J, Lee K, Moon I. A reinforcement learning approach for multi-fleet aircraft recovery under airline disruption[J]. Applied Soft Computing, 2022, 129: 109556.
|
| [8] |
Abdelghany A, Ekollu G, Narasimhan R, et al. A proactive crew recovery decision support tool for commercial airlines during irregular operations[J]. Annals of Operations Research, 2004, 127(1): 309-331.
|
| [9] |
Bayliss C, De Maere G, Atkin J A D, et al. Scheduling airline reserve crew using a probabilistic crew absence and recovery model[J]. Journal of the Operational Research Society, 2020, 71(4): 543-565.
|
| [10] |
Voltes-Dorta A, Rodríguez-Déniz H, Suau-Sanchez P. Passenger recovery after an airport closure at tourist destinations: A case study of Palma de Mallorca airport[J]. Tourism Management, 2017, 59: 449-466.
|
| [11] |
McCarty L A, Cohn A E M. Preemptive rerouting of airline passengers under uncertain delays[J]. Computers & Operations Research, 2018, 90: 1-11.
|
| [12] |
Hassan L K, Santos B F, Vink J. Airline disruption management: A literature review and practical challenges[J]. Computers & Operations Research, 2021, 127: 105137.
|
| [13] |
胡玉真, 张耸, 等. 民航干扰管理——旅客意愿视角[M]. 北京: 科学出版社, 2022.
|
|
Hu Y Z, Zhang S, et al. Civil aviation interference management: From the perspective of passengers' willingness[M]. Beijing: Science Press, 2022.
|
| [14] |
Aguiar B, Torres J, Castro A J M. Operational problems recovery in airlines-a specialized methodologies approach[C]//Proceedings of the Portuguese Conference on Artificial Intelligence, Berlin, Germany, October, Springer Berlin Heidelberg, 2011: 83-97.
|
| [15] |
Le M L, Wu C C. Solving airlines disruption by considering aircraft and crew recovery simultaneously[J]. Journal of Shanghai Jiaotong University (Science), 2013, 18(2): 243-252.
|
| [16] |
Maher S J. Solving the integrated airline recovery problem using column-and-row generation[J]. Transportation Science, 2015, 50(1): 216-239.
|
| [17] |
Zhang D, Henry Lau H Y K, Yu C. A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems[J]. Computers & Industrial Engineering, 2015, 87: 436-453.
|
| [18] |
Khiabani A, Rashidi Komijan A, Ghezavati V, et al. A mathematical model for integrated aircraft and crew recovery after a disruption: A Benders’ decomposition approach[J]. Journal of Modelling in Management, 2023, 18(6): 1740-1761.
|
| [19] |
Petersen J D, Sölveling G, Clarke J P, et al. An optimization approach to airline integrated recovery[J]. Transportation Science, 2012, 46(4): 482-500.
|
| [20] |
Evler J, Lindner M, Fricke H, et al. Integration of turnaround and aircraft recovery to mitigate delay propagation in airline networks[J]. Computers & Operations Research, 2022, 138: 105602.
|
| [21] |
Lettovsky L. Airline operations recovery: An optimization approach[M]. Atlanta: Georgia Institute of Technology ProQuest Dissertations Publishing, 1997.
|
| [22] |
Eggenberg N, Salani M, Bierlaire M. Constraint-specific recovery network for solving airline recovery problems[J]. Computers & Operations Research, 2010, 37(6): 1014-1026.
|
| [23] |
Zhu B, Clarke J P, Zhu J. Real-time integrated flight schedule recovery problem using sampling-based approach[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(2): 1458-1467.
|
| [24] |
Su Y, Xie K, Wang H, et al. Airline disruption management: A review of models and solution methods[J]. Engineering, 2021, 7(4): 435-447.
|
| [25] |
Belobaba P, Odoni A, Barnhart C. The global airline industry[M]. Hoboken: John Wiley & Sons, 2009.
|
| [26] |
Clausen J, Larsen A, Larsen J, et al. Disruption management in the airline industry—Concepts, models and methods[J]. Computers & Operations Research, 2010, 37(5): 809-821.
|
| [27] |
Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95 - International Conference on Neural Networks,Perth, WA, Australia. November 27-December 1, IEEE,2002:1942-1948.
|
| [28] |
董乾东, 李敏. 考虑不同碳排放处理模式的动态供应商选择及采购批量问题研究[J]. 中国管理科学, 2022, 30(8): 106-116.
|
|
Dong Q D, Li M. Research on the dynamic supplier selection and lot-sizing by considering different modes dealing with carbon emission[J]. Chinese Journal of Management Science, 2022, 30(8): 106-116.
|
| [29] |
Cook A, Tanner G, Williams V, et al. Dynamic cost indexing-Managing airline delay costs[J]. Journal of Air Transport Management, 2009, 15(1): 26-35.
|
| [30] |
Arıkan U, Gürel S, Aktürk M S. Flight network-based approach for integrated airline recovery with cruise speed control[J]. Transportation Science, 2017, 51(4): 1259-1287.
|
| [31] |
中国民用航空局. 大型飞机公共航空运输承运人运行合格审定规定[EB/OL]. (2021-03-15) [2023-09-01]. .
|
|
Civil Aviation Administration of China. Regulations for the air operator's certificate of large aircraft in public air transport operations [EB/OL]. (2021-03-15) [2023-09-01]..
|
| [32] |
Poles D. Base of aircraft data (BADA) aircraft performance modelling report[J]. EEC Technical/Scientific Report, 2009, 9: 1-68.
|
| [33] |
Project BADA. User manual for the base of aircraft data (BADA) revision 3.10. [R]. Discussion Paper, Eurocontrol Experimental Centre,2012.
|
| [34] |
Cheng R, Jin Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191-204.
|
| [35] |
Mohapatra P, Nath Das K, Roy S. A modified competitive swarm optimizer for large scale optimization problems[J].Applied Soft Computing,2017,59: 340-362.
|
| [36] |
Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4): 311-338.
|
| [37] |
Karaboga D. Artificial bee colony algorithm[J]. Scholarpedia, 2010, 5(3): 6915.
|
| [38] |
Peng H, Xiao W, Han Y, et al. Multi-strategy firefly algorithm with selective ensemble for complex engineering optimization problems[J]. Applied Soft Computing, 2022, 120: 108634.
|
| [39] |
彭虎, 李源汉, 邓长寿, 等. 多策略调和的布谷鸟搜索算法[J]. 计算机工程, 2022, 48(8): 85-97.
|
|
Peng H, Li Y H, Deng C S, et al. Multi-strategy reconciled cuckoo search algorithm[J]. Computer Engineering, 2022, 48(8): 85-97.
|
| [40] |
Andersson T. Solving the flight perturbation problem with meta heuristics[J]. Journal of Heuristics, 2006, 12(1): 37-53.
|
| [41] |
Gan X, Zhou T, Mai Y, et al. An improved fireworks algorithm for integrated flight timetable and crew schedule recovery problem[C]//Proceedings of the Advances in Swarm Intelligence, Cham, Switzerland, July, Springer, 2022: 329-338.
|