Chinese Journal of Management Science ›› 2025, Vol. 33 ›› Issue (3): 80-92.doi: 10.16381/j.cnki.issn1003-207x.2022.0634
Previous Articles Next Articles
Liukai Wang, Xiaobo Zhang, Weiqing Wang(
), Cheng Liu
Received:2022-03-29
Revised:2022-08-10
Online:2025-03-25
Published:2025-04-07
CLC Number:
Liukai Wang,Xiaobo Zhang,Weiqing Wang, et al. MIDAS-SVQR: A Novel Model for Measuring VaR of Supply Chain Finance Pledge[J]. Chinese Journal of Management Science, 2025, 33(3): 80-92.
"
| 指标 | 铜 | 铝 | 铅 | 锌 | 锡 | 钢铁 |
|---|---|---|---|---|---|---|
| 样本区间 | 2007-01 | 2007-01 | 2007-11 | 2007-11 | 2007-11 | 2007-01 |
| 2021-08 | 2021-08 | 2021-08 | 2021-08 | 2021-08 | 2021-08 | |
| 样本量 | 173 | 173 | 163 | 163 | 163 | 173 |
| 最大值 | 17.961 | 14.856 | 26.307 | 14.537 | 14.373 | 14.132 |
| 最小值 | -43.570 | -13.312 | -42.764 | -40.733 | -38.378 | -2.041 |
| 均值 | -0.112 | -0.012 | -0.386 | -0.342 | 0.234 | 0.325 |
| 中位数 | -0.274 | -0.052 | -0.469 | 0.267 | 0.000 | 0.274 |
| 偏度 | -1.824 | -0.182 | -1.229 | -1.830 | -2.071 | -0.512 |
| 峰度 | 11.398 | 1.424 | 10.143 | 10.437 | 16.077 | 6.259 |
| S–W检验 | 0.860* | 0.957* | 0.836* | 0.879* | 0.846* | 0.590* |
"
| 类别 | 指标 | 变量名称 | 频率 | 说明 |
|---|---|---|---|---|
| 成本 | 能源成本 | 中国大宗商品价格指数能源类 | 月 | 无 |
| 运输成本 | 长江干散货综合运价指数 | 月 | 无 | |
| 供需关系 | 供给 | 精炼铜产量 | 月 | 单位:千吨 |
| 精铝产量 | 月 | 单位:千吨 | ||
| 精炼铅产量 | 月 | 单位:千吨 | ||
| 锌锭产量 | 月 | 单位:千吨 | ||
| 精炼锡产量 | 月 | 单位:千吨 | ||
| 粗钢产量 | 月 | 单位:万吨 | ||
| 需求 | 精炼铜消费量 | 月 | 单位:千吨 | |
| 精铝消费量 | 月 | 单位:千吨 | ||
| 精炼铅消费量 | 月 | 单位:千吨 | ||
| 锌锭消费量 | 月 | 单位:千吨 | ||
| 精炼锡消费量 | 月 | 单位:千吨 | ||
| 粗钢消费量 | 月 | 单位:万吨 | ||
| 宏观经济环境 | 无 | 中国制造业采购经理人指数 | 月 | 无 |
| 汇率 | 日 | 人民比对美元 | ||
| LME铜现货结算价 | 日 | 单位:美元/吨 | ||
| LME铝现货结算价 | 日 | 单位:美元/吨 | ||
| LME铅现货结算价 | 日 | 单位:美元/吨 | ||
| LME锌现货结算价 | 日 | 单位:美元/吨 | ||
| LME锡现货结算价 | 日 | 单位:美元/吨 | ||
| LME基本金属指数 | 日 | 无 |
"
| 模型 | VaR回测检验结果 | ||||
|---|---|---|---|---|---|
| GARCH-N | 0.040 | 0.672 | 0.666 | 0.445 | 0.595 |
| GARCH-t | 0.046 | 0.818 | 0.659 | 0.168 | 0.549 |
| GARCH-St | 0.052 | 0.903 | 0.604 | 0.413 | 0.640 |
| GARCH-GED | 0.046 | 0.818 | 0.659 | 0.188 | 0.555 |
| GARCH-SGED | 0.046 | 0.818 | 0.659 | 0.188 | 0.555 |
| QR | 0.052 | 0.903 | 0.604 | 0.114 | 0.540 |
| SVQR | 0.052 | 0.903 | 0.767 | 0.922 | 0.864 |
| MIDAS-QR | 0.052 | 0.903 | 0.604 | 0.498 | 0.668 |
| MIDAS-SVQR | 0.052 | 0.903 | 0.768 | 0.954 | 0.884 |
"
| 模型 | VaR回测检验结果 | ||||
|---|---|---|---|---|---|
| GARCH-N | 0.043 | 0.672 | 0.453 | 0.414 | 0.513 |
| GARCH-t | 0.037 | 0.418 | 0.572 | 0.099 | 0.363 |
| GARCH-St | 0.037 | 0.418 | 0.572 | 0.099 | 0.363 |
| GARCH-GED | 0.043 | 0.672 | 0.453 | 0.467 | 0.530 |
| GARCH-SGED | 0.037 | 0.418 | 0.572 | 0.099 | 0.363 |
| QR | 0.049 | 0.957 | 0.133 | 0.167 | 0.419 |
| SVQR | 0.049 | 0.957 | 0.623 | 0.922 | 0.834 |
| MIDAS-QR | 0.049 | 0.957 | 0.659 | 0.768 | 0.795 |
| MIDAS-SVQR | 0.049 | 0.957 | 0.687 | 0.989 | 0.877 |
"
| 模型 | VaR回测检验结果 | ||||
|---|---|---|---|---|---|
| GARCH-N | 0.046 | 0.818 | 0.643 | 0.921 | 0.794 |
| GARCH-t | 0.046 | 0.818 | 0.643 | 0.921 | 0.794 |
| GARCH-St | 0.046 | 0.818 | 0.711 | 0.960 | 0.830 |
| GARCH-GED | 0.046 | 0.818 | 0.582 | 0.632 | 0.677 |
| GARCH-SGED | 0.052 | 0.645 | 0.607 | 0.476 | 0.576 |
| QR | 0.046 | 0.818 | 0.659 | 0.040 | 0.506 |
| SVQR | 0.052 | 0.903 | 0.767 | 0.837 | 0.836 |
| MIDAS-QR | 0.052 | 0.903 | 0.604 | 0.120 | 0.542 |
| MIDAS-SVQR | 0.052 | 0.903 | 0.767 | 0.986 | 0.885 |
"
| 模型 | VaR回测检验结果 | ||||
|---|---|---|---|---|---|
| GARCH-N | 0.043 | 0.672 | 0.698 | 0.341 | 0.570 |
| GARCH-t | 0.055 | 0.764 | 0.598 | 0.796 | 0.719 |
| GARCH-St | 0.037 | 0.418 | 0.595 | 0.938 | 0.651 |
| GARCH-GED | 0.055 | 0.764 | 0.598 | 0.168 | 0.510 |
| GARCH-SGED | 0.037 | 0.418 | 0.595 | 0.938 | 0.651 |
| QR | 0.055 | 0.764 | 0.563 | 0.332 | 0.553 |
| SVQR | 0.049 | 0.957 | 0.623 | 0.907 | 0.829 |
| MIDAS-QR | 0.049 | 0.957 | 0.695 | 0.425 | 0.692 |
| MIDAS-SVQR | 0.049 | 0.957 | 0.695 | 0.993 | 0.882 |
"
| 模型 | VaR回测检验结果 | ||||
|---|---|---|---|---|---|
| GARCH-N | 0.043 | 0.672 | 0.666 | 0.445 | 0.595 |
| GARCH-t | 0.043 | 0.672 | 0.666 | 0.445 | 0.595 |
| GARCH-St | 0.055 | 0.764 | 0.563 | 0.493 | 0.606 |
| GARCH-GED | 0.049 | 0.957 | 0.659 | 0.841 | 0.819 |
| GARCH-SGED | 0.049 | 0.957 | 0.659 | 0.841 | 0.819 |
| QR | 0.055 | 0.764 | 0.563 | 0.607 | 0.644 |
| SVQR | 0.049 | 0.957 | 0.659 | 0.902 | 0.839 |
| MIDAS-QR | 0.049 | 0.957 | 0.687 | 0.870 | 0.838 |
| MIDAS-SVQR | 0.049 | 0.957 | 0.687 | 0.963 | 0.869 |
"
| 模型 | VaR回测检验结果 | ||||
|---|---|---|---|---|---|
| GARCH-N | 0.064 | 0.431 | 0.688 | 0.363 | 0.494 |
| GARCH-t | 0.064 | 0.431 | 0.278 | 0.795 | 0.501 |
| GARCH-St | 0.069 | 0.268 | 0.267 | 0.736 | 0.424 |
| GARCH-GED | 0.058 | 0.645 | 0.780 | 0.513 | 0.646 |
| GARCH-SGED | 0.058 | 0.645 | 0.780 | 0.371 | 0.599 |
| QR | 0.046 | 0.818 | 0.659 | 0.074 | 0.517 |
| SVQR | 0.052 | 0.903 | 0.767 | 0.919 | 0.863 |
| MIDAS-QR | 0.046 | 0.818 | 0.643 | 0.946 | 0.802 |
| MIDAS-SVQR | 0.052 | 0.903 | 0.767 | 0.952 | 0.874 |
| 1 | 顾天下, 刘勤明. 面向高维和不平衡数据的供应链金融信用评价研究[J]. 计算机应用研究, 2022, 39(11): 3396-3401. |
| Gu T X, Liu Qi M. Credit evaluation of supply chain finance for high dimensional and unbalanced data [J]. Application Research of Computers, 2022, 39(11): 3396-3401. | |
| 2 | 鲁其辉, 曾利飞, 周伟华. 供应链应收账款融资的决策分析与价值研究[J]. 管理科学学报, 2012, 15(5): 10-18. |
| Lu Q H, Zeng L F, Zhou W H. Research on decision-making and value of supply chain financing with a counts receivables [J]. Journal of Management Science in China, 2012, 15(5): 10-18. | |
| 3 | 冯耕中. 物流金融业务创新分析[J]. 预测, 2007,26(1): 49-54. |
| Feng G Z. Analysis of logistics financing business innovation in China [J]. Forecasting, 2007, 26(1): 49-54. | |
| 4 | Markowitz H. Portfolol selection[J]. The Journal of Finance, 1952, 7(1): 77-91. |
| 5 | Jondeau E, Rockinger M. Conditional volatility, skewness, and kurtosis: Existence, persistence, and comovements[J]. Journal of Economic Dynamics and Control, 2003, 27(10): 1699-1737. |
| 6 | Wu D D, Olson D. Enterprise risk management: A DEA VaR approach in vendor selection[J]. International Journal of Production Research, 2010, 48(16): 4919-4932. |
| 7 | 江涛. 基于GARCH与半参数法VaR模型的证券市场风险的度量和分析:来自中国上海股票市场的经验证据[J]. 金融研究, 2010(6): 103-111. |
| Jiang T. Measurement and analysis of securities market risk based on GARCH and semi-parametric VaR model: Empirical evidence from China's shanghai stock market [J]. Journal of Financial Research, 2010(6): 103-111. | |
| 8 | 何娟, 王建, 蒋祥林. 存货质押业务质物组合价格风险决策[J]. 管理评论, 2013, 25(11): 163-176. |
| He J, Wang J, Jiang X L. The risk decision of inventory portfolio in supply chain finance[J].Management Review, 2013, 25(11): 163-176. | |
| 9 | 胡海青, 陈迪, 张丹, 等. 基于Copula的供应链金融质物组合价格风险测度研究[J]. 运筹与管理, 2020, 29(3): 77-90. |
| Hu H Q, Chen D, Zhang D, et al. Study of price risk measurement of pledged portfolio in supply chain based on Copula [J]. Operations Research and Management Science, 2020, 29(3): 77-90. | |
| 10 | 吕永健, 符廷銮, 胡颖毅, 等. 基于拔靴滤波历史模拟法的黄金市场 VaR 测度研究[J]. 中国管理科学, 2019, 27(7): 46-55. |
| Lv Y J, Fu T L, Hu Y Y, et al. A study of Chinese gold market based on bootstrapped filtered historical simulation approaches [J]. Chinese Journal of Management Science, 2019, 27(7): 46-55. | |
| 11 | Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50. |
| 12 | Taylor J W. A quantile regression approach to estimating the distribution of multiperiod returns[J]. The Journal of Derivatives, 1999, 7(1): 64-78. |
| 13 | 刘向丽, 张翼鹏. 钢铁行业供给侧改革对股市影响研究——基于系统风险管理视角[J]. 管理评论, 2020, 32(7): 258-266. |
| Liu X L, Zhang Y P. Research on the impact of supply-side reform of iron and steel industry on stock market: From the perspective of systemic risk management[J].Management Review,2020,32(7):258-266. | |
| 14 | 杨子晖, 陈雨恬, 张平淼. 股票与外汇市场尾部风险的跨市场传染研究[J]. 管理科学学报, 2020,23(8): 54-77. |
| Yang Z H, Chen Y T, Zhang P M. Cross-market contagion effect on tail risk between stock markets and exchange markets [J]. Journal of Management Science in China, 2020, 23(8): 54-77. | |
| 15 | Calmon W, Ferioli E, Lettieri D, et al. An extensive comparison of some well-established value at risk methods[J]. International Statistical Review, 2021, 89(1): 148-166. |
| 16 | Li Y J, Liu Y F, Zhu J. Quantile regression in reproducing kernel hilbert spaces[J]. Journal of the American Statistical Association, 2007, 102(477): 255-268. |
| 17 | Cannon A J. Quantile regression neural networks: Implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2011, 37(9): 1277-1284. |
| 18 | 许启发, 李辉艳, 蒋翠侠, 等. 基于QRNN+GARCH方法的供应链金融多期价格风险测度及防范[J]. 数理统计与管理, 2018, 37(4): 728-740. |
| Xu Q F, Li H Y, Jiang C X, et al. Evaluating and preventing multi-period price risk in supply chain finance via QRNN+GARCH method [J]. Journal of Applied Statistics and Management, 2018, 37(4): 728-740. | |
| 19 | 许启发, 张金秀, 蒋翠侠. 基于非线性分位数回归模型的多期VaR风险测度[J]. 中国管理科学, 2015, 23(3): 56-65. |
| Xu Q F, Zhang J X, Jiang C X. Evaluating multiperiod VaR via nonlinear quantile regression model[J]. Chinese Journal of Management Science, 2015, 23(3):56-65. | |
| 20 | Lima L R, Meng F N, Godeiro L. Quantile forecasting with mixed-frequency data[J]. International Journal of Forecasting, 2020, 36(3): 1149-1162. |
| 21 | Xu Q F, Wang L K, Jiang C X, et al. A novel UMIDAS-SVQR model with mixed frequency investor sentiment for predicting stock market volatility[J]. Expert Systems with Applications, 2019, 132: 12-27. |
| 22 | 许启发, 刘书婷, 蒋翠侠. 基于 MIDAS 分位数回归的条件偏度组合投资决策[J]. 中国管理科学, 2021, 29(3): 24-36. |
| Xu Q F, Liu S T, Jiang C X. Portfolio selection with conditional skewness estimated via MIDAS quantile regression[J]. Chinese Journal of Management Science, 2021, 29(3): 24-36. | |
| 23 | 陈强, 龚玉婷, 袁超文. 基于MIDAS模型的中国股市对居民消费的影响效应[J]. 系统管理学报, 2018, 27(6): 1028-1035. |
| Chen Q, Gong Y T, Yuan C W. An examination of stock market impacts on residential consumption in China:An empirical analysis based on the MIDAS model[J]. Journal of System & Management, 2018, 27(6):1028-1035. | |
| 24 | Ghysels E, Sinko A, Valkanov R. MIDAS regressions: Further results and new directions[J]. Econometric Reviews, 2007, 26(1): 53-90. |
| 25 | Kupiec P. Techniques for verifying the accuracy of risk measurement models[J]. The Journal of Derivatives, 1995, 3(2): 73-84. |
| 26 | Christoffersen P F. Evaluating interval forecasts[J]. International Economic Review, 1998, 39(4): 841-862. |
| 27 | Christoffersen P, Pelletier D. Backtesting value-at-risk: A duration-based approach[J]. Journal of Financial Econometrics, 2004, 2(1): 84-108. |
| 28 | Pan Y C, Xiao Z, Wang X N, et al. A multiple support vector machine approach to stock index forecasting with mixed frequency sampling[J]. Knowledge-Based Systems, 2017, 122: 90-102. |
| 29 | Xu Q F, Wang L K, Jiang C X, et al. A novel(U)MIDAS-SVR model with multi-source market sentiment for forecasting stock returns[J]. Neural Computing and Applications, 2020, 32(10): 5875-5888. |
| 30 | Pettenuzzo D, Timmermann A, Valkanov R.A MIDAS approach to modeling first and second moment dynamics[J]. Journal of Econometrics, 2016, 193(2): 315-334. |
| 31 | 刘汉, 刘金全. 中国宏观经济总量的实时预报与短期预测——基于混频数据预测模型的实证研究[J]. 经济研究, 2011, 46(3): 4-17. |
| Liu H, Liu J Q. Nowcasting and short-term forecasting of Chinese macroeconomic aggregates: Based on the empirical study of MIDAS model[J]. Economic Research, 2011, 46(3):4-17. | |
| 32 | Ma X, Liu Z B. Predicting the oil production using the novel multivariate nonlinear model based on Arps decline model and kernel method[J]. Neural Computing and Applications, 2018, 29(2): 579-591. |
| 33 | Yuan M. GACV for quantile smoothing splines[J]. Computational Statistics & Data Analysis, 2006, 50(3): 813-829. |
| 34 | Tsai C Y. On delineating supply chain cash flow under collectionrisk[J]. International Journal of Production Economics, 2011, 129(1): 186-194. |
| 35 | 钟美瑞, 谌杰宇, 黄健柏, 等. 基于MSVAR模型的有色金属价格波动影响因素的非线性效应研究[J]. 中国管理科学, 2016, 24(4): 45-53. |
| Zhong M R, Chen J Y, Huang J B, et al. Nonlinear effects studies of influence of nonferrous metals price flutuation based on MSVAR model[J]. Chinese Journal of Management Science, 2016, 24(4):45-53. | |
| 36 | Khoshalan H A, Shakeri J, Najmoddini I, et al. Forecasting copper price by application of robust artificial intelligence techniques[J]. Resources Policy, 2021, 73: 102239. |
| 37 | 叶翀, 曹峰, 张玲. 我国沿海与内河干散货运价指数联动性研究[J]. 价格理论与实践, 2019(3): 73-76. |
| Ye C, Cao F, Zhang L. Research on the linkage of China’s coastal and inland river dry bulk freight index[J]. Price Theory and Practice, 2019(3):73-76. | |
| 38 | Humphreys D. The great metals boom: A retrospective[J]. Resources Policy, 2010, 35(1): 1-13. |
| 39 | 刘超, 郑莹, 刘宸琦, 等. 股市是经济的晴雨表吗?——基于2005-2017年沪深300指数和采购经理人指数数据[J]. 系统工程理论与实践, 2020, 40(1): 55-68. |
| Liu C, Zheng Y, Liu C Q, et al. Is the stock market a barometer of the economy? Based on the 2005-2017 year's CSI 300 index and PMI data[J]. Systems Engineering-Theory & Practice,2020,40(1):55-68. | |
| 40 | 冯辉, 张蜀林. 国际黄金期货价格决定要素的实证分析[J]. 中国管理科学, 2012, 20(S1): 424-428. |
| Feng H, Zhang S L. The empirical analysis about the determining of international gold futures prices[J]. Chinese Journal of Management Science, 2012, 20(S1): 424-428. | |
| 41 | 李洁, 杨莉. 上海和伦敦金属期货市场价格联动性研究——以铜铝锌期货市场为例[J]. 价格理论与实践, 2017(8): 100-103. |
| Li J, Yang L. A study on the price linkage between the Shanghai and London metal futures markets: A case study of copper, aluminum, and zinc futures markets[J]. Price Theory and Practice, 2017(8): 100-103. | |
| 42 | 朱学红, 谌金宇, 邵留国. 信息溢出视角下的中国金属期货市场国际定价能力研究[J]. 中国管理科学, 2016, 24(9): 28-35. |
| Zhu X H, Chen J Y, Shao L G. The international pricing POWER of Chinese metal futures market based on information spillover[J]. Chinese Journal of Management Science, 2016, 24(9): 28-35. |
| [1] | Jun Tian, Zanqiang Dong, Yali Li. Research on Financing Strategy of Advance Payment Supply Chain [J]. Chinese Journal of Management Science, 2025, 33(7): 272-283. |
| [2] | Hui Yu, Shuang Wang. Supply Chain Finance: How can Enterprises Achieve Sustainability? [J]. Chinese Journal of Management Science, 2025, 33(5): 280-289. |
| [3] | Mengdie Zhao, Changjun Wang, Saiyu Zhou. Scarce Price and Demand Data Driven Risk-averse Newsvendor Decisions [J]. Chinese Journal of Management Science, 2025, 33(2): 232-241. |
| [4] | Nan Xie,Haitao He,Yanju Zhou,Zongrun Wang. Research on Supply Chain Financial Decision Based on the Analysis of Central Government Project Subsidy under the Background of Rural Revitalization Subsidy [J]. Chinese Journal of Management Science, 2024, 32(8): 214-229. |
| [5] | Rui Sun,Dayi He,Huilin Su. Application of Blockchain Technology to Preventing Supply Chain Finance Based on Evolutionary Game [J]. Chinese Journal of Management Science, 2024, 32(3): 125-134. |
| [6] | Dawen Yan,Cun Li,Guotai Chi. Dynamic Financial Distress Prediction for Chinese Listed Companies Based on the Mixed Frequency Data [J]. Chinese Journal of Management Science, 2024, 32(1): 1-12. |
| [7] | LOU Yong, CHANG Yu-xing, HAO Feng-xia. The Influence of Blockchain on Supply Chain Finance——Based on Tripartite Game Theory and Dynamic Evolutionary Game Theory [J]. Chinese Journal of Management Science, 2022, 30(12): 352-360. |
| [8] | KOU Hong-hong, CHAI Jian. Does the Shanghai Crude Oil Futures Market Have a Role in Stabilizing China’s Stock Market? [J]. Chinese Journal of Management Science, 2022, 30(11): 20-30. |
| [9] | XIONG Yi-peng, XIONG Zheng-de, YAO Zhu. Under the Macroscopic Stress Test Commercial Bank Retail Credit Products PD Model Prediction Research [J]. Chinese Journal of Management Science, 2020, 28(7): 13-22. |
| [10] | JIN Xiang-shu, YUAN Wen-yan, WU Jun, LI Jian, WANG Ya-jing. Risk Control of Supply Chain Finance based on Revenuesharing-bidirectional Option Contract [J]. Chinese Journal of Management Science, 2020, 28(1): 68-78. |
| [11] | CHAI Shang-lei, ZHOU Peng. Measuring the Integrated Risk of Carbon Financial Market by a Non-parametric Copula-CVaR Model [J]. Chinese Journal of Management Science, 2019, 27(8): 1-13. |
| [12] | LYU Yong-jian, FU Ting-luan, HU Ying-yi, DAI Dan-miao. A Study of Risk Measurements of Chinese Gold Market based on Bootstraped Filtered Historical Simulation Approaches [J]. Chinese Journal of Management Science, 2019, 27(7): 46-55. |
| [13] | ZHANG Chong, YUAN Lan-lan, WANG Hai-yan. A Research of Supply Chain Finance Model Based on ACC Payment [J]. Chinese Journal of Management Science, 2018, 26(4): 88-96. |
| [14] | YANG Kun, YU Wen-hua, WEI Yu. Dynamic Measurement of Extreme Risk among Various Crude Oil Markets Based on R-vine copula [J]. Chinese Journal of Management Science, 2017, 25(8): 19-29. |
| [15] | YU Hui, LI Xi, WANG Ya-wen. Electronic Commerce Platform-Joint Supply Chain Financing Mode: Bank Lending VS. Electronic Commercial Platform Lending [J]. Chinese Journal of Management Science, 2017, 25(7): 134-140. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
||