主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

竞争网络与公司财务绩效

  • 朱建新 ,
  • 刘可心 ,
  • 曾能民 ,
  • 吴雄
展开
  • 哈尔滨工程大学经济管理学院,大数据与商务智能技术工业和信息化部重点实验室 (哈尔滨工程大学),黑龙江 哈尔滨 150001
朱建新(1971-),男(汉族),黑龙江哈尔滨人,哈尔滨工程大学经济管理学院,大数据与商务智能技术工业和信息化部重点实验室(哈尔滨工程大学),执行主任,教授,博士生导师,研究方向:战略与创新、大数据与商务智能,E-mail:zhjx@vip.163.com.

收稿日期: 2022-10-25

  修回日期: 2024-01-10

  网络出版日期: 2025-09-10

基金资助

国家社会科学基金重点项目(20AGL009)

Competitive Network and Financial Performance: Empirical Evidence Based on Explainable Random Forest

  • Jianxin Zhu ,
  • Kexin Liu ,
  • Nengmin Zeng ,
  • Xiong Wu
Expand
  • School of Economics and Management,Harbin Engineering University,Key Laboratory of Big Data and Business Intelligence Technology (Harbin Engineering University),Ministry of Industry and Information Technology,Harbin 150001,China

Received date: 2022-10-25

  Revised date: 2024-01-10

  Online published: 2025-09-10

摘要

竞争网络位置作为企业制定战略决策的关键因素,其对财务绩效影响的重要性评估是本文研究的重点。本文以我国2008-2019年的财产保险行业为研究样本构建竞争网络,采用基于可解释性随机森林的机器学习模型衡量竞争网络特征对企业财务绩效的重要性,并进一步分析竞争网络特征对拟合企业财务绩效模型的相对重要性排序以及因果关系。研究发现:(1)整体而言,竞争网络或者市场结构特征的缺失都会降低对企业财务绩效模型的拟合性能,其中竞争网络特征缺失带来的影响更为明显。(2)按照重要程度对竞争网络中的特征进行排序,并进一步采用SHAP解释模型探索竞争网络特征影响财务绩效的内在机理,结果表明,个体网规模、中间人次数和接近中心性这三个最为重要的特征对财务绩效均服从幂律分布。(3)进一步地,运用倾向得分匹配方法验证了变量间的强因果关系,证明该研究范式对传统计量模型的开发也具有重要的指导作用。本文的结论丰富了竞争网络与财务绩效相关领域的研究成果并对其提供依据,且为面向高维、非线性因素间的因果分析与验证提供了新的解决思路。

本文引用格式

朱建新 , 刘可心 , 曾能民 , 吴雄 . 竞争网络与公司财务绩效[J]. 中国管理科学, 2025 , 33(8) : 75 -89 . DOI: 10.16381/j.cnki.issn1003-207x.2022.2294

Abstract

The significance of the competitive network position as a key factor in firms' strategic decision-making and its impact on financial performance is the focus of this study. First, using China's property insurance industry from 2008 to 2019 as the research subject, a Random Forest model is constructed to investigate the predictability of competitive network characteristics and market structure characteristics. Next, the importance of competitive network and market structure is analyzed using the feature importance evaluation method of the Random Forest model. Finally, the nonlinear functional relationship between these important features and financial performance is revealed using SHAP values and further the causal relationship between key competitive network features and financial performance is verified using traditional econometric models (Propensity Score Matching). It also explores the differences between nonlinear and linear model results.The research findings show that (1) Overall, the absence of either competitive network or market structure features can reduce the fitting performance of the enterprise financial performance model, with the impact of missing competitive network features being more pronounced. (2) In terms of the ranking of feature importance, competitive network features account for approximately 30% of the importance to enterprise financial performance, significantly higher than the importance of market structure features. Key features within competitive network include: individual network size, intermediary frequency, and closeness centrality. (3) These three key features follow a power-law distribution with respect to enterprise financial performance, and the existence of a strong causal relationship between important competitive network features and financial performance was verified through propensity score matching. The conclusions of this paper enrich the research outcomes in the field of competitive networks and financial performance, providing support for them, and offer a new solution for causal analysis and verification between high-dimensional, nonlinear factors.

参考文献

[1] Porter M E. Competitive strategy: Techniques for analyzing industries and competitors[M]. New York: Free Press, 1980.
[2] Yao E, Ferrier W J, Yu T, et al. Rivals by association: Competition networks and firm performance[C]//Proceedings of the Atlanta Competitive Advantage Conference, Atlanta, June 12-14, 2008.
[3] 喻冬冬, 罗春林, 万谧宇, 等. 滋养你的竞争对手?——考虑电商平台自有品牌的平台需求信息共享策略[J]. 中国管理科学202432(1): 325-334.
  Yu D D, Luo C L, Wan M Y, et al. Nourish your competitor?Demand information sharing of E-commerce platform in the presence of store brand encroachment[J]. Chinese Journal of Management Science202432(1): 325-334.
[4] 邓新明, 郭雅楠. 竞争经验、多市场接触与企业绩效——基于红皇后竞争视角[J]. 管理世界202036(11): 111-132.
  Deng X M, Guo Y N. Competitive experience, multi-market contact, and firm performance: Based on the perspective of red queen competition[J]. Journal of Management World202036(11): 111-132.
[5] 沈文欣, 翁羽佳, 郑弦, 等. 复杂工程项目群多项目合作与竞争网络形成机理研究[J]. 中国管理科学202331(12): 281-289.
  Shen W X, Weng Y J, Zheng X, et al. Characteristics and formation of multi-project cooperation and competition networks in complex program[J]. Chinese Journal of Management Science202331(12): 281-289.
[6] Shaffer S, Spierdijk L. Measuring multi-product banks’ market power using the Lerner index[J]. Journal of Banking & Finance2020117: 105859.
[7] Tsai W, Su K H, Chen M J. Seeing through the eyes of a rival: Competitor acumen based on rival-centric perceptions[J]. Academy of Management Journal201154(4): 761-778.
[8] 陆瑶, 张叶青, 黎波, 等. 高管个人特征与公司业绩——基于机器学习的经验证据[J]. 管理科学学报202023(2): 120-140.
  Lu Y, Zhang Y Q, Li B, et al. Managerial individual characteristics and corporate performance: Evidence from a machine learning approach[J]. Journal of Management Sciences in China202023(2): 120-140.
[9] Gao S, Tang O, Wang H, et al. Identifying competitors through comparative relation mining of online reviews in the restaurant industry[J]. International Journal of Hospitality Management201871: 19-32.
[10] Liu Y, Jiang C, Zhao H. Assessing product competitive advantages from the perspective of customers by mining user-generated content on social media[J]. Decision Support Systems2019123: 113079.
[11] 许鑫, 朱奕帆, 姚占雷. 数据驱动的企业多层竞争网络构建与态势分析[J].情报学报201837(8): 836-844.
  Xu X, Zhu Y F, Yao Z L. Construction and analysis of enterprise multi-layered competitive network based on data driver[J]. Journal of the China Society for Scientific and Technical Information201837(8): 836-844.
[12] Skilton P F, Bernardes E. Competition network structure and product market entry[J]. Strategic Management Journal201536(11): 1688-1696.
[13] 周宏, 赵若瑜, 李文洁, 等. 大数据背景下市场竞争与债券信用风险——基于企业多元化发展的实证检验[J]. 会计研究2020(12): 125-136.
  Zhou H, Zhao R Y, Li W J, et al. Market competition and bond credit risk under the background of big data—Empirical test based on enterprise diversification development[J].Accounting Research2020(12): 125-136.
[14] 后锐, 张乐. 多市场接触竞争及其测度计算方法[J]. 经济与管理评论201430(2): 45-52.
  Hou R, Zhang L. Multi-market contact competition and its measurement calculation method[J]. Review of Economy and Management201430(2): 45-52.
[15] 邓新明, 罗欢, 杨赛凡, 等. 基于静态与动态双重视角下的企业规模、竞争复杂性与市场绩效的关系研究——来自中国家电行业的实证检验[J]. 管理评论202133(12): 284-294.
  Deng X M, Luo H, Yang S F, et al. The correlation among firm size, competitive complexity and market performance seen from static and dynamic perspectives: An empirical study on Chinese household appliance industry[J]. Management Review202133(12): 284-294.
[16] Chen M J, Lin H C, Michel J G. Navigating in a hypercompetitive environment: The roles of action aggressiveness and TMT integration[J]. Strategic Management Journal201031(13): 1410-1430.
[17] Sun X, Yuan F, Wang Y. Market power and R&D investment: The case of China[J]. Industrial and Corporate Change202230(6): 1499-1515.
[18] Alhassan A L, Biekpe N. Pricing power in insurance markets: Evidence from South Africa[J]. International Journal of Bank Marketing201937(5): 1371-1392.
[19] 尹建华, 王森, 弓丽栋. 重污染企业环境绩效与财务绩效关系研究: 企业特征与环境信息披露的联合调节效应[J]. 科研管理202041(5): 202-212.
  Yin J H, Wang S, Gong L D. Research on the relationship between environmental performance and financial performance of heavily polluting firms: The joint moderating effects of firm characteristics and environmental information disclosure[J]. Science Research Management202041(5): 202-212.
[20] 李心愉, 郁智慧. 我国寿险公司绩效影响因素实证研究[J]. 商业研究2011(11): 1-7.
  Li X Y, Yu Z H. Factors influencing the performance of life insurance corporations in China[J]. Commercial Research2011(11): 1-7.
[21] 王丽珍, 李湘, 周意. 资本调整、风险承担与再保险水平的互动关系研究——基于财险公司面板数据的实证检验[J]. 管理评论202133(10): 34-47.
  Wang L Z, Li X, Zhou Y. The research on the relationship among capital adjustment, risk-taking and reinsurance levels: Evidence from property insurance industry[J]. Management Review202133(10): 34-47.
[22] 陈素琴, 翁智慧. 风险投资与受资企业财务绩效相关性研究——基于创业板上市公司[J]. 会计之友2018(11): 85-92.
  Chen S Q, Weng Z H. Research on the correlation between venture capital and financial performance of funded enterprises:Based on the listed companies on growth enterprise market[J]. Friends of Accounting2018(11): 85-92.
[23] 高明华, 郭传孜. 混合所有制发展、董事会有效性与企业绩效[J].经济与管理研究201940(9): 114-134.
  Gao M H, Guo C Z. Mixed ownership, effectiveness of the board of directors and corporate performance[J]. Research on Economics and Management201940(9): 114-134.
[24] 丁寅寅. 股权集中度、股权制衡度对公司绩效的影响研究——基于中小板上市公司的实证检验[J]. 经营与管理2017(12): 26-29.
  Ding Y Y. Research on the influence of ownership concentration and equity balance on corporate performance:Based on the empirical test of listed companies in small and medium-sized board[J]. Management and Administration2017(12): 26-29.
[25] 李建标, 李帅琦, 王鹏程. 两职分离形式的公司治理效应及其滞后性[J].管理科学201629(1): 53-69.
  Li J B, Li S Q, Wang P C. The corporate governance effect and hysteresis of different forms of chairman-CEO separation[J]. Journal of Management Science201629(1): 53-69.
[26] 卜伶鑫. 东北地区上市公司治理结构对绩效的影响实证分析[J]. 经营与管理2018(9): 40-43.
  Bu L X. Empirical analysis on the influence of governance structure on performance of listed companies in Northeast China[J]. Management and Administration2018(9): 40-43.
[27] 张鹏, 邓然, 张立琨. 企业家社会资本与创业绩效关系研究[J]. 科研管理201536(8): 120-128.
  Zhang P, Deng R, Zhang L K. A study on the relationship between entrepreneur’s social capital and entrepreneurial performance[J]. Science Research Management201536(8): 120-128.
[28] 李洪波, 闫鑫, 姚博文. 基于集成学习的科研计划项目绩效预测研究[J]. 科技管理研究202141(21): 204-210.
  Li H B, Yan X, Yao B W. Performance prediction of scientific research projects based on ensemble learning[J]. Science and Technology Management Research202141(21): 204-210.
[29] 黄冰洁, 张同斌. 中国制造业企业绩效分化的关键影响因素识别及传导网络图解——基于机器学习组合算法的研究[J]. 运筹与管理202231(4): 224-231.
  Huang B J, hang T B Z. Identification of key influencing factors and transmission network diagram of performance differentiation of Chinese manufacturing enterprises:A study based on machine learning combination algorithm[J].Operations Research and Management Science202231(4):224-231.
[30] 易明, 姚玉佳, 胡敏. 融合XGBoost与SHAP的政务新媒体公共价值共识可解释性模型——以“今日头条” 十大市级政务号为例[J]. 图书情报工作202266(16): 36-47.
  Yi M, Yao Y J, Hu M. An interpretable model for new government media public value consensus integrating XGBoost and SHAP: Taking the top 10 municipal government accounts of the Jinri Toutiao as an example[J]. Library and Information Service202266(16): 36-47.
[31] Zheng S, He C, Hsu S C, et al. Corporate environmental performance prediction in China: An empirical study of energy service companies[J]. Journal of Cleaner Production2020266: 121395.
[32] 汪万敏, 智路平. 基于ADASYN-SFS-RF的欺诈检测模型泛化性能提升及可解释性研究[J]. 计算机应用研究202239(12): 3605-3613.
  Wang W M, Zhi L P. Fraud detection model generalization performance improvement and interpretability study based on ADASYN-SFS-RF[J]. Application Research of Computers202239(12): 3605-3613.
[33] Kuzlu M, Cali U, Sharma V, et al. Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools[J].IEEE Access20208: 187814-187823.
[34] Zhang J, Jiang Y, Li X, et al. Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection[J]. IEEE/ASME Transactions on Mechatronics202328(2): 632-643.
[35] Zhang J, Tian J, Alcaide A M, et al. Lifetime extension approach based on the levenberg-marquardt neural network and power routing of DC-DC converters[J]. IEEE Transactions on Power Electronics202338(8): 10280-10291.
[36] Breiman L. Random forests[J]. Machine Learning200145(1): 5-32.
[37] 余顺坤, 宋宇晴. GRA-RF组合算法在农信金融企业工资要素优选及测算中的应用[J]. 中国管理科学202230(4): 86-95.
  Yu S K, Song Y Q. Research on the application of GRA-RF in optimization and calculation of age elements of rural credit financial enterprise[J]. Chinese Journal of Management Science202230(4): 86-95.
[38] Janitza S, Tutz G, Boulesteix A L. Random forest for ordinal responses: Prediction and variable selection[J]. Computational Statistics & Data Analysis201696: 57-73.
[39] Lundberg S M, Lee S I. A unified approach to interpreting model predictions [C]// Proceedings of the 31st Conference on Neural Information Processing Systems,Long Beach, CA, USA, December 4-9, 2017.
[40] Maulana Kusdhany M I, Lyth S M. New insights into hydrogen uptake on porous carbon materials via explainable machine learning[J]. Carbon2021179: 190-201.
[41] 朱建新, 刘浏.复杂网络视角下的财险业竞争关系网络建模[J].哈尔滨工程大学学报202142(3): 439-446.
  Zhu J X, Liu L. Modeling of an underwriting competition network from the perspective of complex network[J]. Journal of Harbin Engineering University202142(3): 439-446.
[42] Day G S, Reibstein D J, Gunther R E. Wharton on dynamic competitive strategy[M]. Hoboken, New Jersey: John Wiley & Sons, 2004.
[43] 刘超, 许澜涛. 多层时序网络视角下的最优投资组合策略研究[J]. 中国管理科学2024,DOI:/10.16381/j.cnki.issn1003-207x.2023.0851 .
  Liu C, Xu L T. Study on optimal portfolio strategy from the perspective of multilayer temporal network[J]. Chinese Journal of Management Science2024,DOI:10.16381/j.cnki.issn1003-207x.2023.0851 .
[44] 莫东序, 郑田丹. 基于复杂网络的投资组合优化研究[J]. 中国管理科学202129(5): 25-33.
  Mo D X, Zheng T D. Research on portfolio optimization based on complex network[J]. Chinese Journal of Management Science202129(5): 25-33.
[45] Lerner A P. The concept of monopoly and the measurement of monopoly power[J]. The Review of Economic Studies19341(3): 157-175.
[46] 姚东旻. 因果推断初步: 微观计量经济学导论[M]. 北京: 清华大学出版社, 2022.
  Yao D M. Causal inference:Introduction to microeconometrics.[M]. Beijing: Tsinghua University Press, 2022.
文章导航

/