中国管理科学 >
2025 , Vol. 33 >Issue 8: 355 - 368
DOI: https://doi.org/10.16381/j.cnki.issn1003-207x.2024.0953
MRV机制下碳数据质量监管多主体行为决策研究
收稿日期: 2024-06-13
修回日期: 2024-08-04
网络出版日期: 2025-09-10
基金资助
国家自然科学基金项目(72404070);中国博士后科学基金项目(2020M670892);黑龙江省自然科学基金项目(LH2024G013);黑龙江省哲学社会科学规划项目(22GLC276)
Research on Multi-Agent Decision-Making in Carbon Data Quality Supervision under MRV Mechanism: A Blockchain Technology Empowerment Perspective
Received date: 2024-06-13
Revised date: 2024-08-04
Online published: 2025-09-10
针对MRV机制下碳数据质量监管中的风险问题,探究区块链赋能多主体最优行为决策。本文首先剖析了区块链技术对碳数据质量监管情境下多主体行为决策的赋能机制,并利用演化博弈理论和方法构建了政府部门、控排企业和第三方碳核查机构参与的混合策略博弈模型,通过对各方主体的策略稳定性及系统的均衡性进行分析,求解了区块链赋能多主体参与碳数据质量协同管理的有效条件,最后利用数值仿真方法进一步探讨了关键参数对参与主体行为演化的影响。研究发现:(1)以区块链为支撑构建多方节点交互的链上监管体系能够有效缓解碳数据质量监管难题,随着区块链技术的普及和公众环保意识的增强,政府实施区块链监管模式是促进多方共治的前提和趋势;(2)控排企业具有与核查机构合谋投机的主观倾向,应在财税奖励、上链补贴的基础上,大幅提高作假成本与合谋门槛,才能有效规范控排企业诚信减排;(3)信用成本是第三方碳核查机构策略选择的关注重点,但信用成本存在“失效区间”,取值落在区间内会使系统策略演化陷入博弈僵局,完善的多重复查和信用惩罚机制有利于破解这一局面。研究能够为引导碳交易相关主体行为决策,规范碳数据质量管理提供有益借鉴。
吕希琛 , 田银凤 , 田世海 , 刘佳缘 , 孔庆伟 . MRV机制下碳数据质量监管多主体行为决策研究[J]. 中国管理科学, 2025 , 33(8) : 355 -368 . DOI: 10.16381/j.cnki.issn1003-207x.2024.0953
Carbon data quality is the lifeline of carbon trading and holds significant implications in realizing the “dual-carbon” strategy objectives. Consequently, in light of the existing risks associated with regulating carbon data quality under the MRV mechanism, the optimal behavior decision-making empowered by blockchain technology for multiple agents is explored. Initially, the enabling mechanism of blockchain technology on the behavior decisions of multiple agents in the context of carbon data quality supervision is dissected. Subsequently, an evolutionary game theory and method are utilized to construct a mixed-strategy game model involving government regulatory authorities, emission-capping enterprises, and third-party carbon verification agencies. By analyzing the stability of the strategies of the various agents and the equilibrium of the system, the effective conditions for collaborative carbon data quality management with the participation of multiple agents empowered by blockchain are solved. Furthermore, referring to policy documents and typical cases, the impact of key parameters on the behavioral evolution of participants is further explored using numerical simulation methods. The research findings indicate that: (1) The construction of an on-chain supervision system with multiple interactions of different nodes supported by blockchain can effectively alleviate the regulatory problems of carbon data quality. With the widespread adoption of blockchain technology and the strengthening of public environmental awareness, the implementation of blockchain regulatory models by the government is a prerequisite and trend for promoting joint governance by multiple parties. (2) Emission-capping enterprises have a subjective tendency to engage in collusion and speculation with the verification agencies. It is necessary to significantly increase the cost of fraud and the threshold for collusion on the basis of fiscal and tax incentives and on-chain subsidies, in order to effectively regulate the integrity of emission-capping enterprises in reducing emissions. (3) The focus of strategy selection for third-party carbon verification agencies is credit cost, but there exists a "failure interval" for credit cost parameters, which may lead to a game deadlock in system strategy evolution. A robust mechanism of multiple reviews and credit penalties is conducive to the verification institutions actively fulfilling their responsibilities and overcoming this situation. This research can help mitigate the risk of carbon data quality supervision under the MRV mechanism, and provide a valuable reference for the effective guidance of behavioral decision-making among carbon trading-related subjects and the regulation of data quality management within the carbon market.
[1] | 牛苗苗, 谭显春, 郭建新, 等. 碳总量控制政策对中国经济高质量发展的影响——基于中国省际面板数据的实证研究[J]. 中国管理科学, 2024, 32(9): 24-34. |
Niu M M, Tan X C, Guo J X, et al. The impact of total carbon control on high-quality development: A study based on China’s provincial panel data[J]. Chinese Journal of Management Science, 2024, 32(9): 24-34. | |
[2] | 龙迪, 范丹婷, Slater Huw, 等. 碳排放数据质量问题及提升建议[J]. 环境保护, 2022, 50(12): 54-56. |
Long D, Fan D T, Slater H, et al. Carbon emission data quality issues and improvement suggestions[J]. Environmental Protection, 2022, 50(12): 54-56. | |
[3] | 邓爱民, 李云凤.基于区块链的供应链“智能保理” 业务模式及博弈分析[J].管理评论,2019,31(9): 231-240. |
Deng A M, Li Y F. “Intelligent factoring” business model and game analysis in the supply chain based on block chain[J]. Management Review, 2019, 31(9): 231-240. | |
[4] | Wang J, Jin S, Bai W, et al. Comparative analysis of the international carbon verification policies and systems[J]. Natural Hazards, 2016, 84(1): 381-397. |
[5] | 刘学之, 朱乾坤, 孙鑫, 等. 欧盟碳市场MRV制度体系及其对中国的启示[J]. 中国科技论坛, 2018(8): 164-173. |
Liu X Z, Zhu Q K, Sun X, et al. Study on EU ETS MRV system and the enlightenments for China[J]. Forum on Science and Technology in China, 2018(8): 164-173. | |
[6] | 任洪涛. “双碳” 背景下碳排放数据质量监管的制度省思与法治完善[J]. 广西社会科学, 2023(2): 11-19. |
Ren H T. Institutional reflection and legal improvement of carbon emission data supervision under the carbon peaking and carbon neutrality goals[J]. Social Sciences in Guangxi, 2023(2): 11-19. | |
[7] | 王国飞. 碳排放数据造假民事公益诉讼规制研究[J]. 理论月刊, 2023(7): 125-139. |
Wang G F. Study on regulation of civil public interest litigation to carbon emission data falsification[J]. Theory Monthly, 2023(7): 125-139. | |
[8] | Li G, Wang X. Energy quota trading policy and energy efficiency: The role of government supervision and public participation[J]. Technological Forecasting and Social Change, 2024, 206: 123565. |
[9] | Wen M, Zeng J, Qiu M. Analysis on trilateral game of government agency, emission-dependent firm and carbon verification institutions under cap-and-trade scheme[J].Advanced Materials Research, 2015, 1092-1093: 1585-1590. |
[10] | 王丹丹, 菅利荣, 付帅帅. 基于多方参与的“碳核查” 业务权利寻租行为监管及控制研究[J]. 运筹与管理, 2022, 31(9): 225-231. |
Wang D D, Jian L R, Fu S S. The supervision and control of rent-seeking behavior of carbon verification business rights based on multi-party participation[J]. Operations Research and Management Science, 2022, 31(9): 225-231. | |
[11] | 杨刚强, 王海森, 范恒山, 等. 数字经济的碳减排效应: 理论分析与经验证据[J]. 中国工业经济, 2023(5): 80-98. |
Yang G Q, Wang H S, Fan H S, et al. Carbon reduction effect of digital economy: Theoretical analysis and empirical evidence[J]. China Industrial Economics, 2023(5): 80-98. | |
[12] | 李峰,孙玥琪,魏学辉.数字经济如何赋能区域创新能力的提升?[J].科技管理学报,2024,26(1):61-76. |
Li F, Sun Y Q, Wei X,H. How does digital economy enable regional innovation capactiy to improve?[J]. Journal of Science and Technology Management, 2024, 26(1): 61-76. | |
[13] | Liu X, Wang Y, Wang J, et al. Supply chain financial logistics supervision system based on blockchain technology[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(8): 11059-11069.. |
[14] | 李登峰, 杜晓丽. 监管机构参与业务审核流程的国际贸易物流区块链共识算法研究[J]. 中国管理科学, 2025,33(3): 128-138. |
Li D F, Du X L. Study on blockchain consensus algorithm of international trade logistics under business audit process with the participation of regulators[J]. Chinese Journal of Management Science,2025,33(3): 128-138. | |
[15] | 沈伟. 数字经济时代的区块链金融监管: 现状、风险与应对[J]. 人民论坛·学术前沿, 2022(18): 52-69. |
Shen W. Blockchain financial regulation in the era of digital economy: Current situation, risks and responses[J]. Frontiers, 2022(18): 52-69. | |
[16] | 张志朋. 区块链赋能碳数据安全治理的逻辑与规制[J]. 情报杂志, 2023, 42(5): 86-93. |
Zhang Z P. Logic and regulation of blockchain empowering carbon data security governance[J]. Journal of Intelligence, 2023, 42(5): 86-93. | |
[17] | 纪峰. 区块链嵌入下碳资产管理会计体系构建[J]. 财会月刊, 2023,44(17): 66-71. |
Ji F. Construction of carbon asset management accounting system under blockchain embedding[J]. Finance and Accounting Monthly, 2023, 44(17): 66-71. | |
[18] | Ju C, Shen Z, Bao F, et al. A novel credible carbon footprint traceability system for low carbon economy using blockchain technology[J]. International Journal of Environmental Research and Public Health, 2022, 19(16): 10316. |
[19] | 李幸芝, 韩蓓, 李国杰, 等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993. |
Li X Z, Han B, Li G J, et al. Challenges of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993. | |
[20] | Singh P, Masud M, Hossain M S, et al. Cross-domain secure data sharing using blockchain for industrial IoT[J]. Journal of Parallel and Distributed Computing, 2021, 156: 176-184. |
[21] | 谭春桥, 党华平, 覃展辉. 区块链赋能下国有企业审计监管主体策略选择演化博弈分析[J]. 运筹与管理, 2023, 32(4): 14-22. |
Tan C Q, Dang H P, Qin Z H. Evolutionary game analysis of state-owned enterprise audit supervision subject strategy selection under blockchain empowerment[J]. Operations Research and Management Science, 2023, 32(4): 14-22. | |
[22] | Ritzberger K, Weibull J W. Evolutionary selection in normal-form games[J]. Econometrica, 1995, 63(6): 1371. |
[23] | Friedman D. Evolutionary games in economics[J]. Econometrica, 1991, 59(3): 637. |
[24] | 何奇龙, 唐娟红, 罗兴, 等. 政企农协同治理农业面源污染的演化博弈分析[J]. 中国管理科学, 2023, 31(7): 202-213. |
He Q L, Tang J H, Luo X, et al. Evolutionary game analysis of agricultural non-point source pollution coordinated governance by government, agricultural enterprise and farmers[J]. Chinese Journal of Management Science, 2023, 31(7): 202-213. | |
[25] | 张令荣, 彭博, 程春琪. 基于区块链技术的低碳供应链政府补贴策略研究[J]. 中国管理科学, 2023, 31(10): 49-60. |
Zhang L R, Peng B, Cheng C Q. Research on government subsidy strategy of low-carbon supply chain based on block-chain technology[J]. Chinese Journal of Management Science, 2023, 31(10): 49-60. |
/
〈 |
|
〉 |