中国管理科学 >
2025 , Vol. 33 >Issue 4: 299 - 312
DOI: https://doi.org/10.16381/j.cnki.issn1003-207x.2022.1434
碳交易背景下依托平台的协作配送双重低碳激励策略研究
收稿日期: 2022-07-01
修回日期: 2022-10-02
网络出版日期: 2025-04-29
基金资助
国家社会科学基金重点项目(22AGL021)
Dual Low-carbon Incentive Strategy for Collaborative Distribution Based on a Digital Platform under the Background of Carbon Trading
Received date: 2022-07-01
Revised date: 2022-10-02
Online published: 2025-04-29
当前协作配送模式未达到碳排放最优状态,低碳额外支出成本及碳数据核查难题导致物流配送企业减排动力不足,如何激励协作配送企业采用低碳模式对实现双碳目标至关重要。本文依托政府主导的数字化平台,设计双重低碳激励策略鼓励企业采用协作配送低碳模式。首先,构建利益损失和碳排放量化模型,计算协作配送低碳模式与传统模式的成本和碳排放差值;其次,提出考虑碳交易收益和政府补贴的双重激励策略,设计基于减排贡献的碳配额机制和双重激励流程,对比分析单一激励和双重激励策略对企业和政府最优决策的影响;最后,通过数值实验对模型和策略的有效性和可行性进行检验。结果表明,依托数字化平台的协作配送低碳模式相比于传统模式减少了31%~67%的碳排放量;基于减排贡献的碳配额机制能够提高企业采用协作配送低碳模式的意愿;双重低碳激励策略能够降低15%~31%的政府财政支出,碳排放超额惩罚机制能够约束高排放企业。以上结论可为政府分配物流配送领域碳配额、实施低碳激励和超额惩罚提供参考。
饶卫振 , 周俐辰 , 马翔宇 , 朱庆华 . 碳交易背景下依托平台的协作配送双重低碳激励策略研究[J]. 中国管理科学, 2025 , 33(4) : 299 -312 . DOI: 10.16381/j.cnki.issn1003-207x.2022.1434
If collaborative distribution is optimized in a low-carbon model as opposed to a low-cost model, the cost and carbon emissions will be different. Distribution companies lack motivation to reduce emissions due to higher low carbon expenditure prices and difficulties with carbon data verification. Enterprise alliances seeking to maximize economic benefits typically opt for the low-cost model, so collaborative distribution model has not yet achieved the state of minimizing carbon emissions currently. How to precisely incentivize collaborative distribution companies to adopt the low-carbon model is crucial to achieving the dual-carbon goal.A dual low-carbon incentive strategy is created based on information collected from a government-led digital platform to encourage distribution companies to adopt the low-carbon model. Firstly, adopting incentive strategies requires a scientific estimate of the benefit loss and carbon emission of the alliance members. This problem is modelled as an integer programming which minimizes vehicle routing costs or carbon emissions for sub-alliances, and then costs and carbon emissions are calculated. The cost-sharing values and carbon emissions of each participant in the two models are determined using the Shapley value method and benefit loss models and carbon emission models are created using these data. Secondly, distribution companies are only encouraged to adopt the low-carbon model when the benefit loss is fully made up for. Based on this, a dual low-carbon incentive strategy is suggested considering government subsidies and revenue from carbon quota trading, a carbon quota mechanism is designed based on emission reduction contribution, and compares and the impact of a single incentive strategy and a dual incentive strategy on the best choice made by companies and the government is analyzed. Finally, numerical experiments are used to determine whether the model and strategy are valid and workable.Results indicate that compared to the conventional model, the collaborative distribution low-carbon model based on the digital platform reduces carbon emissions by 31% to 67%. Distribution companies may be more inclined to adopt a low-carbon model if carbon quota mechanisms are based on emission reduction contributions. The dual low-carbon incentive strategy can reduce government fiscal outlay by 15% to 31%, and the carbon emissions overrun penalty mechanism can penalize high-emitting enterprises. The government can use this study as a supplement to current theory and practice to distribute carbon quotas for distribution companies, implement low-carbon incentives, impose penalties for exceeding them, and assist in meeting the double carbon target on schedule.
1 | 叶强, 高超越, 姜广鑫. 大数据环境下我国未来区块链碳市场体系设计[J]. 管理世界, 2022, 38(1): 229-249. |
Ye Q, Gao C Y, Jiang G X. The structure design of China dlockchain carbon market for the future big data environment[J]. Journal of Management World, 2022, 38(1): 229-249. | |
2 | 张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38(1): 35-66. |
Zhang X L, Huang X D, Zhang D, et al. Research on the pathway and policies for China’s energy and economy transformation toward Carbon neutrality[J]. Journal of Management World, 2022, 38(1): 35-66. | |
3 | 李璟, 谢家平, 古丽扎尔·艾赛提. 非对称信息下考虑绿色偏好差异化与碳约束的减排定价策略优化[J]. 中国管理科学, 2024,32(4):293-305. |
Li J, Xie J P, Aisaiti Gulizhaer. optimization of emission reducing and pricing decisions based on differentiated green preference and carbon constraints under information asymmetry[J]. Chinese Journal of Management Science, 2024,32(4):293-305. | |
4 | 周伟. “双碳”目标下交通运输转型发展挑战与机遇[N]. 中国交通报, 2021-09-23(3). |
Zhou W. Challenges and opportunities of transportation transformation and development under the “dual carbon” target[N]. China Traffic News, 2021-09-23(3). | |
5 | Han R, Yang M. Profit distribution and stability analysis of joint distribution alliance based on tripartite evolutionary game theory under the background of green and low carbon[J]. Environmental Science and Pollution Research, 2022, 29(39):59633-59652. |
6 | Van Zon M, Spliet R, Van den Heuvel W. The joint network vehicle routing game[J]. Transportation Science, 2021, 55(1): 179-195. |
7 | 袁韵, 徐戈, 陈晓红, 等. 城市交通拥堵与空气污染的交互影响机制研究——基于滴滴出行的大数据分析[J]. 管理科学学报, 2020, 23(2): 54-73. |
Yuan Y, Xu G, Chen X H, et al. Study on the interactive mechanism of urban traffic congestion and air pollution: A big data analysis based on didi chuxing[J]. Journal of Management Science in China, 2020, 23(2): 54-73. | |
8 | Choi T M, Kumar S, Yue X, et al. Disruptive technologies and operations management in the Industry 4.0 era and beyond[J]. Production and Operations Management, 2022, 31(1): 9-31. |
9 | Sovacool B K, Newell P, Carley S, et al. Equity, technological innovation and sustainable behaviour in a low-carbon future[J]. Nature Human Behaviour, 2022, 6(3): 326-337. |
10 | Csóka P, Jean Jacques P H. Decentralized clearing in financial networks[J]. Management Science, 2018, 64(10): 4681-4699. |
11 | 饶卫振, 徐丰, 朱庆华, 等. 依托平台协作配送成本分摊的有效方法研究[J]. 管理科学学报, 2021, 24(9): 105-126. |
Rao W Z, Xu F, Zhu Q H, et al. Fair and effective cost-sharing method for collaborative distribution based on a third-party platform[J]. Journal of Management Sciences in China, 2021, 24(9): 105-126. | |
12 | Gansterer M, Hartl R F. Collaborative vehicle routing: A survey[J]. European Journal of Operational Research, 2018, 268(1): 1-12. |
13 | Demir E, Bekta? T, Laporte G. A review of recent research on green road freight transportation[J]. European Journal of Operational Research, 2014, 237(3): 775-793. |
14 | Wang Y, Peng S, Guan X, et al. Collaborative logistics pickup and delivery problem with ecopackages based on time-space network[J]. Expert Systems with Applications, 2021, 170: 114561. |
15 | 周鲜成, 周开军, 王莉, 等. 物流配送中的绿色车辆路径模型与求解算法研究综述[J]. 系统工程理论与实践, 2021, 41(1): 213-230. |
Zhou X C, Zhou K J, Wang L, et al. Review of green vehicle routing model and its algorithm in logistics distribution[J]. Systems Engineering—Theory & Practice, 2021, 41(1): 213-230. | |
16 | 饶卫振, 段忠菲, 王炳成, 等. 协作车辆路径问题距离和能耗节约量理论边界研究[J]. 系统管理学报, 2019, 28(4): 697-707. |
Rao W Z, Duan Z F, Wang B C, et al. Theoretical bound of savings on distance and fuel consumption in the collaborative vehicle routing problem[J]. Journal of Systems & Management, 2019, 28(4): 697-707. | |
17 | Ghannadpour S F, Zarrabi A. Multi-objective heterogeneous vehicle routing and scheduling problem with energy minimizing[J]. Swarm and Evolutionary computation, 2019, 44: 728-747. |
18 | Raeesi R, Zografos K G. The multi-objective Steiner pollution-routing problem on congested urban road networks[J]. Transportation Research Part B: Methodological, 2019, 122: 457-485. |
19 | 李冬冬, 杨晶玉. 基于政府补贴的企业最优减排技术选择研究[J]. 中国管理科学, 2019, 27(7): 177-185. |
Li D D, Yang J Y. Choice of optimal environmental technology based on government subsidy[J]. Chinese Journal of Management Science, 2019, 27(7): 177-185. | |
20 | 张令荣, 彭博, 程春琪. 基于区块链技术的低碳供应链政府补贴策略研究[J]. 中国管理科学,2023,31(10):49-60. |
Zhang L R, Peng B, Cheng C Q. Research on government subsidy strategy of low-carbon supply chain based on block-chain technology[J]. Chinese Journal of Management Science,2023,31(10):49-60. | |
21 | Dusanee K, Vasileios Z. R&D versus output subsidies in mixed markets[J]. Economics Letters, 2013, 118(2): 293-296. |
22 | 王明喜, 胡毅, 郭冬梅, 等. 碳税视角下最优排放实施与企业减排投资竞争[J]. 管理评论, 2021, 33(8): 17-28. |
Wang M X, Hu Y, Guo D M, et al. Optimal emissions implementation and enterprises’abatement investment competition under the carbon tax tool[J]. Management Review, 2021, 33(8): 17-28. | |
23 | 令狐大智, 武新丽, 叶飞. 考虑双重异质性的碳配额分配及交易机制研究[J]. 中国管理科学, 2021, 29(3): 176-187. |
Linghu D Z, Wu X L, Ye F. Carbon quota allowance & trading mechanism considering double heterogeneity[J]. Chinese Journal of Management Science, 2021, 29(3): 176-187. | |
24 | Wang R, Cheng S, Zuo X, et al. Optimal management of multi stakeholder integrated energy system considering dual incentive demand response and carbon trading mechanism[J]. International Journal of Energy Research, 2022, 46(5): 6246-6263. |
25 | 邹清明, 胡李庆, 邹霆钧. 碳限额与碳交易机制下考虑公平关切的供应链定价与协调研究[J]. 中国管理科学, 2022,30(10):142-154. |
Zou Q M, Hu L Q, Zou T J. Pricing and coordination of a supply chain with fairness concerns under carbon cap-and-trade mechanism[J]. Chinese Journal of Management Science, 2022,30(10):142-154. | |
26 | 刘海英, 王钰. 基于历史法和零和DEA方法的用能权与碳排放权初始分配研究[J]. 中国管理科学, 2020, 28(9): 209-220. |
Liu H Y, Wang Y. Research on initial allocation of energy—consuming right and CO2—emission right based on historical method and ZSG—DEA method[J]. Chinese Journal of Management Science, 2020, 28(9): 209-220. | |
27 | 戢晓峰, 白淑敏, 陈方, 等. 效率视角下省域交通碳排放配额分配研究[J]. 干旱区资源与环境, 2022, 36 (4): 1-7. |
Ji X F, Bai S M, Chen F, et al. Allocation of provincial transportation carbon emission quota from the perspective of efficiency[J]. Journal of Arid Land Resources and Environment, 2022, 36(4): 1-7. | |
28 | Gopalakrishnan S, Granot D, Granot F, et al. Incentives and emission responsibility allocation in supply chains[J]. Management Science, 2021, 67(7): 4172-4190. |
29 | Schwab K. The fourth industrial revolution[M]. New York:Crown Publishing Group, 2017. |
30 | Wang Y, Zhang S, Guan X, et al. Collaborative multi-depot logistics network design with time window assignment[J]. Expert Systems with Applications, 2020, 140: 112910. |
31 | 饶卫振, 金淳, 王新华, 等. 考虑道路坡度因素的低碳VRP问题模型与求解策略[J]. 系统工程理论与实践, 2014, 34(8): 2092-2105. |
Rao W Z, Jin C, Wang X H, et al. A model of low-carbon vehicle routing problem considering road gradient and its solving strategy[J]. Systems Engineering—Theory & Practice, 2014, 34(8): 2092-2105. | |
32 | Luo Z, Qin H, Zhang D, et al. Adaptive large neighborhood search heuristics for the vehicle routing problem with stochastic demands and weight-related cost[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 85: 69-89. |
33 | Shapley L S. A value for n-person games[J]. Contributions to the Theory of Games, 1953, 28: 307-317. |
/
〈 |
|
〉 |