主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于非均匀离散Fourier变换的隐含Levy模型估计研究

展开
  • 1. 东南大学经济管理学院, 江苏 南京 210096;
    2. 南京信息工程大学数学与统计学院, 江苏 南京 210000
曹杰(1973-),男(汉族),安徽人,南京信息工程大学数学与统计学院,教授,博士生导师,研究方向:金融工程,E-mail:kindcj@njsut.edu.cn.

收稿日期: 2017-01-03

  修回日期: 2017-12-06

  网络出版日期: 2018-10-22

基金资助

国家社会科学基金重大项目(16ZDA054)

Estimating Implied Levy Models based on non-uniform Discrete Fourier Transforms

Expand
  • 1. School of Economics & Management, Southeast University, Nanjing 210096, China;
    2. School of Mathematical & Statistics, Nanjing University of Information Science & Technology, Nanjing 210000, China

Received date: 2017-01-03

  Revised date: 2017-12-06

  Online published: 2018-10-22

摘要

市场上交易的期权价格蕴含了市场参与者对期权标的资产价格未来运动的预期信息,基于期权价格得到的标的资产价格运动模型被称为隐含模型,应用于衍生品定价与风险管理显著优于基于资产价格历史数据得到的模型,Levy模型近年来被广泛应用于描述金融资产的价格运动。Levy模型一般不存在解析形式的概率密度函数,但总是存在解析形式的特征函数。利用Levy模型下期权定价的Fourier变换理论,基于非均匀离散Fourier变换研究了隐含Levy模型的参数估计问题。首先,基于Fourier变换的欧式期权定价,给出了欧式看涨期权价格与特征函数之间的关系。接着,介绍了Levy过程基本性质及其特征函数。再接着,给出了非均匀Fourier变换;然后,给出了Fourier域的模型拟合与参数估计。最后,演示了本文方法的在估计隐含Levy模型中的应用,从模型参数估计与模型识别两个方面验证了方法的有效性。研究结果表明,本文方法能够解决Levy过程不存在着解析形式密度函数导致的难以估计隐含模型参数问题,能够处理市场上交易的期权执行价格分布不均匀,数据量少的问题,是一种有价值的参数法隐含概率密度估计方法。

本文引用格式

胡小平, 曹杰 . 基于非均匀离散Fourier变换的隐含Levy模型估计研究[J]. 中国管理科学, 2018 , 26(8) : 13 -19 . DOI: 10.16381/j.cnki.issn1003-207x.2018.08.002

Abstract

The price of the option traded on the market contains the prospective information of market participants on future movements of the underlying asset price. The underlying asset price movement model based on the option price is called an implied model, which is obviously superior to the model based on the history data of asset price while applied to pricing derivatives and risk management. The Levy model has been widely used to describe the price movement of financial assets in recent years, and the general Levy model does not have an analytic form of the probability density function, but there is always an analytic form of the characteristic functions. Based on the Fourier transform method of option pricing under the Levy model, the problem estimating the parameters of the implicit Levy model is studied based on the non-uniform discrete Fourier transform (NDFT). First of all, the European options pricing is introduced based on the Fourier transform, and the relationship between the European call option price and the characteristic function is also given. Then, the basic properties of Levy process and its characteristic function are described. Then, the non-uniform Fourier transform is given. Then, the model fitting and parameter estimation of the Fourier domain are given. Finally, the application of this method to the estimation of the implied Levy model is demonstrated, and the effectiveness of the method is verified from two aspects of model parameter estimation and model identification. The results show that this method can solve the problem that the most of Levy process does not have the analytic form of density function, which cannot estimate the implied Levy model parameter problem, and can also deal with the problem of uneven distribution of option execution price in the market and less data quantity.

参考文献

[1] Rubinstein M. Implied binomial trees[J]. The Journal of Finance, 1994, 49(3):771-818.

[2] Derman E, Kani I, Chriss N. Implied trinomial tress of the volatility smile[J]. The Journal of Derivatives, 1996, 3(4):7-22.

[3] Wan H. Pricing American-style basket options by implied binomial tree[R]. Working Paper, Haas School of Business,2002.

[4] Hui E C-M. An enhanced implied tree model for option pricing:A study on Hong Kong property stock options[J]. International Review of Economics & Finance, 2006, 15(3):324-345.

[5] Lai W-N. Comparison of methods to estimate option implied risk-neutral densities[J]. Quantitative Finance, 2014, 14(10):1839-1855.

[6] Du Yijun, Wang Chen, Du Yibing, et al.:Inversion of option prices for implied risk-neutral probability density functions:General theory and its applications to the natural gas market[J]. Quartitative Finance, 2012,12(12):1877-1891.

[7] Celis O S, Liang Lingzhi, Lemmens D, et al. Determining and benchmarking risk neutral distributions implied from option prices[J]. Applied Mathematics and Computation, 2015, 258:372-387.

[8] Santos A, Guerra J. Implied risk neutral densities from option prices:Hypergeometric, spline, lognormal, and edgeworth functions[J]. Journal of Futures Markets, 2015, 35(7):655-678.

[9] Hu Xiaoping, Cui Hairong, Zhu Lihua, et al. Recovering implied risk-neutral probability density function using SVR[J]. Journal of Southeast University, 2010, 26(3):489-493.

[10] 崔海蓉, 胡小平. 基于GMD的隐含最小距离风险中性概率测度提取[J]. 东南大学学报(自然科学版), 2011, (01):210-214.

[11] Fang Fang, Oosterlee C W. A novel pricing method for European options based on Fourier-cosine series expansions[J]. SIAM Journal on Scientific Computing, 2008, 31(2):826-848.

[12] Dia B M. A regularized fourier transform approach for valuing options under stochastic dividend yields[J]. International Journal of Theoretical and Applied Finance, 2010, 13(2):211-240.

[13] Kwok Y K, Leung K S, Wong H Y. Efficient options pricing using the fast fourier transform[M]//Duan Jinchuan, Härde WK, Gentle JE. Handbook of computational finance. Berlin-Heidelbery:Springer, 2012:579-604.

[14] Zhang Sumei, Wang Lihe. Fast fourier transform technique for pricing European options with stochastic volatility and jump risk[J]. Applied Mathematics and Computation, 2013,219(23):10928-10933.

[15] Ortiz-Gracia L, Oosterlee C W. A highly efficient Shannon wavelet inverse fourier technique for pricing European options[J]. SIAM Journal on Scientific Computing, 2016, 38(1):B118-B143.

[16] Eberlein E. Fourier-based valuation methods in mathematical finance[M]//Benth F E, Kholodnyi V A, Laurence P. Quantitative energy finance:Modeling, pricing, and hedging in energy and commodity markets. New York, NY:Springer New York, 2014:85-114.

[17] Dempster MAH, Hong SSG. Pricing spread options with the fast Fourier transform[C]. Mathematical Finance, Bachelier Congress. Springer-Verlag, Berlin, 2000:203-220.

[18] Pellegrino T, Sabino P. Pricing and hedging multiasset spread options using a three-dimensional Fourier cosine series expansion method[J]. Journal of Energy Markets, 2014, 7(2):1-40.

[19] Andersson M. Valuation of spread options using the fast Fourier transform under stochastic volatility and jump diffusion models[D]. Lwnd, Scania, Sweden:Lund University,2015.

[20] Ramponi A. Fourier transform methods for regime-switching jump-diffusions and the pricing of forward starting options[J]. International Journal of Theoretical and Applied Finance, 2012, 15(05):125-137.

[21] Zhang B, Oosterlee C. Pricing of early-exercise Asian options under Lévy processes based on Fourier cosine expansions[J]. Applied Numerical Mathematics, 2014, 78:14-30.

[22] Ibrahim S N I, O'hara J G, Constantinou N. Pricing extendible options using the fast Fourier transform[J]. Mathematical Problems in Engineering, 2014, 2014:1-30.

[23] Fusai G. Pricing Asian options via Fourier and Laplace transforms[J]. Journal of Computational Finance, 2004, 7(3):87-106.

[24] Huang C-S, O'hara J G, Mataramvura S. Efficient pricing of discrete arithmetic Asian options under mean reversion and jumps based on Fourier-cosine expansions[J]. Journal of Computational and Applied Mathematics, 2017, 311:230-238.

[25] Fang Fang, Oosterlee C W. Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions[J]. Numerische Mathematik, 2009, 114(1):27-62.

[26] Eberlein E, Glau K, Papapantoleon A. Analyticity of the Wiener-Hopf factors and valuation of exotic options in Lévy models[M]//Di Nunno G, Øksendal B. Advanced mathematical methods for finance, Berlin, Heidelberg:Springer Berlin Heidelberg, 2011:223-245.

[27] Mordecki E. Optimal stopping and perpetual options for Lévy processes[J]. Finance and Stochastics, 2002, 6(4):473-493.

[28] Sheu Y-C, Tsai M-Y. On the optimal stopping problems for matrix-exponential Lévy processes[R]. Institute of Mathematics, Academia Sinica, Taipei, Taiwan, 2011.

[29] Boyarchenko S I, Levendorskii S Z. Perpetual American options under Lévy processes[J]. SIAM Journal on Control and Optimization, 2002, 40(6):1663-1696.

[30] Zhylyevskyy O. A fast Fourier transform technique for pricing American options under stochastic volatility[J]. Review of Derivatives Research, 2010, 13(1):1-24.

[31] Gyulov T, Valkov R. American option pricing problem transformed on finite interval[J]. International Journal of Computer Mathematics, 2016, 93(5):821-836.

[32] Wong H Y, Guan Peiqiu. An FFT-network for Lévy option pricing[J]. Journal of Banking & Finance, 2011, 35(4):988-999.

[33] Madan D B, Yor M. Representing the CGMY and Meixner Lévy processes as time changed Brownian motions[J]. Journal of Computational Finance, 2008, 12(1):27.

[34] 刘志东, 陈晓静. Levy Tempered Stable金融资产收益分布及其CF-CGMM估计方法研究[J]. 中国管理科学, 2009, 17(3):18-26.

[35] 沈根祥, 胡志军. 中国股票市场资产价格模型设定检验[J]. 中国管理科学, 2014, 22(2):16-23.

[36] Carr P, Madan D. Option valuation using the fast Fourier transform[J]. Journal of Computational Finance, 1999, 2(4):61-73.

[37] White R. Option pricing with Fourier methods[J]. Open Gamma Quantitative Research, 2013, 1(1):1-20.

[38] Duijndam A J W, Schonewille M A. Nonuniform fast Fourier transform[J]. Geophysics, 1999, 64(2):539-551.

[39] Greengard L, Lee J-Y. Accelerating the nonuniform fast Fourier transform[J]. SIAM Review, 2004, 46(3):443-454.
文章导航

/