主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

嵌入GARCH波动率估计的B1ack-Litterman投资组合模型

展开
  • 江西财经大学金融学院, 江西 南昌 330013
凌爱凡(1977-),男(汉族),江西新建人,江西财经大学金融学院教授,研究方向:金融工程与资产定价,E-mail:aiffling@163.com.

收稿日期: 2016-03-10

  修回日期: 2017-07-11

  网络出版日期: 2018-08-22

基金资助

国家自然科学基金资助面上项目(71371090,71771107);江西省青年科学家培育项目(20153BCB23006);江西省教育厅重点项目(20161BAB201026);江西省自然科学基金资助项目(20153BCB23006)

The B1ack-Litterman Portfolio Model Embedded GARCH to Estimate Volatility

Expand
  • School of Finance, Jiangxi University of Finance and Economics, Nanchang 330013, China

Received date: 2016-03-10

  Revised date: 2017-07-11

  Online published: 2018-08-22

摘要

在B1ack-Litterman投资组合模型中,为了更有效地估计风险资产的期望收益和波动率,引入了投资者的主观观点,这种处理确实能提高均值-方差投资组合模型的性能。但是在实践中,如何度量投资者观点成了另一个难题。为了克服这一困难,我们将GARCH波动率估计嵌入到B1ack-Litterman模型中,通过使用GARCH模型的预测能力来替代投资者主观观点,从而获得一个新的投资决策模型。作为应用,分别考虑了国内外真实市场数据测试情形,通过实证结果发现,嵌入了GARCH波动率估计后,Black-Litterman模型的性能可进一步得到很好提高,样本外平均收益率、波动率和夏普比等指标,均要好于一些传统模型。

本文引用格式

凌爱凡, 陈骁阳 . 嵌入GARCH波动率估计的B1ack-Litterman投资组合模型[J]. 中国管理科学, 2018 , 26(6) : 17 -25 . DOI: 10.16381/j.cnki.issn1003-207x.2018.06.003

Abstract

The investor's subjective view is the key factor in B1ack-Litterman portfolio model and can improve the performance of the mean-variance portfolio. But, in practice, it is found that the opinions of investors are difficult to measure and compute.To overcome this difficulty, GARCH model is embedded to B1ack-Litterman model. The volatility prediction of GARCH model is used to estimate the paramaters in B1ack-Litterman model. Specially, we summary as follows.
Methods:In order to estimate the parameters of subjective views of investors, GARCH model is used to estimate the views' vectors and subjective volatility by the following predicting equation:

with all coefficients known.
Data:Two market data sets are considered. One is from China A share market, in which we take SSE 380 Index, and the portfolio consists of 10 different indices from SSE 380 Index. The data is from Jan 4th 2005 to Dec 31st 2016. Another is from US market, in which three indices, 10 Industry portfolio, 17 Industry portfolio and 25 Indusrty portfolio, are chosen, and all data is from French Library data.
Results:Comparisions with mean-variance model and BL model with modified by Idzorek(2002) are considered. Our numerical results show that (1) The BL model embedded GARCH can reduce the volatility of portfolio and obtain the smallest volatility among three models, (2) The largest Sharpe ratio can be obtained by the proposed model, and (3) the cumulative return (wealth) is highest among three model for the same investment period.

参考文献

[1] Markowitz H M.Portfolio selection[J].The Journal of Finance, 1952, 7(1):77-91.

[2] JorionP.Value at risk:The new benchmark for managing financial[M]. 3rd ed.New York:McGraw-Hill, 2006.

[3] Rockafellar RT, Uryasev S.Optimization of conditional value-at-Risk[J]. The Journal of Risk, 2000, 2(3):21-41.

[4] Chopra V K, Hensel C R. Turner A L, Massaging mean-variance inputs:Returns from alternative investment strategies in the 1980s[J]. Management Science,1993,39(7):845-855.

[5] Michaud R O. The markowitz optimization enigma:Is optimized optimal[J]. Financial Analysts Journal,1989,45(1):31-42.

[6] Harvey C R,Liechty J C. Liechty M W. Bayes vs. resampling:A rematch[J]. Journal of Investment Management,2008,(1):29-45.

[7] Black F, Litterman R. Global portfolio optimization[J]. Financial Analysts Journal, 1992, 48(5):28-43.

[8] Satchell S, Scowcroft A. A Demystification of the Black-Litterman Model:Managing Quantitative and Traditional Construction[J].Journal of Asset Management,2000,1(2):138-150.

[9] Herold U.Portfolio construction with qualitative forecasts[J].Journal of Portfolio Management,2003,30(1):61-72.

[10] Chiarwongse A, Kiatsupaibul S, Tirapat S, et al. Portfolio selection with qualitative input[J]. Journal of Banking & Finance, 2012, 36(2):489-496.

[11] Giacometti R, Bertocchi M, Rachev S T, et al. Stable distributions in the Black-Litterman approach to asset allocation[J]. Quantitative Finance, 2007, 7(4):423-433.

[12] Idzorek T.A step-by-step guide to the Black-Litterman model:Incorporating user-specified confidence eevels[M]//Satchell S, Ebrary I. Forecasting expected returns in the financial markets, Academic press, 2002, 17-38.

[13] Bertsimas D, Gupta V.PaschalidisI. Inverse optimization:A new perspective on the Black-Litterman model[J]. Operations Research 2012, 60(6):1389-1403.

[14] Xiao Yugu, Valdez E A. A Black-Litterman asset allocation model under Elliptical distributions[J]. Quantitative Finance, 2015, 15(3):509-519.

[15] Bessler W, Opfer H, Wolff D. Multi-asset portfolio optimization and out-of-sample performance:An evaluation of Black-Litterman, mean-variance, and naïve diversification approaches[J]. The European Journal of Finance, 2017, 23(1):1-30.

[16] Walters J. The Black-Litterman model in detail[R]. Working Paper, Boston University, 2014.

[17] 孟勇. B-L模型的保险资金投资多元化问题研究——从行为投资组合角度[J]. 保险研究, 2011,(8):52-56.

[18] 黄琼,朱书尚,姚京. 投资组合策略的有效性检验:基于中国市场的实证分析[J]. 管理评论. 2011,23(7):3-10.

[19] 蒋崇辉,马永开,安云碧. 市场、策略与国际投资利益:基于中国投资者的视角实证分析[J].系统工程理论与实践, 2012, 32(4):693-703.

[20] 孟勇. 基于Black-litterman模型的外汇储备资产投资策略研究——基于行为金融观点[J]. 华南理工大学学报:社会科学版, 2012,14(1):30-35.

[21] 尹力博韩立岩. 国际大宗商品资产行业配置研究[J]. 系统工程理论与实践, 2014, 34(3):560-574.

[22] Hlouskova J, Schmidheiny K, Wagner M. Multistep predictions for multivariate GARCH models:Closed form solution and the value for portfolio management[J]. Journal of Empirical Finance, 2009, 16(2):330-336.

[23] Mcaleer M, daVeiga B. Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model[J]. Journal of Forecasting, 2008, 27(1):1-19.

[24] Lu Xunfa, Lai K K, Liang Liang. Portfolio value-at-risk estimation in energy futures markets with time varying copula-GARCH model[J]. Annals of operations research, 2014, 219(1):333-357.

[25] Engle RF. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation[J].Econometrica,1982,50(4):978-1008.

[26] Bollerslev T.Generalized autoregressive conditional Heterosce dasticity[J]. Journal of Econometrics,1986,31(3):307-327.

[27] Best M J, Grauer R R. On the sensitivity of mean-variance efficient portfolios to changes in asset means:some analytical and computational results[J]. Review of Financial Studies,1991,4(2):315-342.

[28] Jobson J D, Korkie B M. Performance hypothesis testing with the Sharpe and Treynor measures[J]. Journal of Finance,1981, 36(4):889-908.

[29] Memmel C. Performance hypothesis testing with the Sharpe ratio[J]. Finance Letters, 2003,1(1):21-23.

[30] 许启发, 周莹莹, 蒋翠侠. 带有范数约束的CVaR高维组合投资决策[J].中国管理科学,2017, 25(2):40-49.

[31] 王增文. 经济新常态下中国社会保障基金均衡投资组合策略及决定因素分析——基于沪深两市数据的比较[J]. 中国管理科学,2017, 25(8):30-38.
文章导航

/