在B1ack-Litterman投资组合模型中,为了更有效地估计风险资产的期望收益和波动率,引入了投资者的主观观点,这种处理确实能提高均值-方差投资组合模型的性能。但是在实践中,如何度量投资者观点成了另一个难题。为了克服这一困难,我们将GARCH波动率估计嵌入到B1ack-Litterman模型中,通过使用GARCH模型的预测能力来替代投资者主观观点,从而获得一个新的投资决策模型。作为应用,分别考虑了国内外真实市场数据测试情形,通过实证结果发现,嵌入了GARCH波动率估计后,Black-Litterman模型的性能可进一步得到很好提高,样本外平均收益率、波动率和夏普比等指标,均要好于一些传统模型。
[1] Markowitz H M.Portfolio selection[J].The Journal of Finance, 1952, 7(1):77-91.
[2] JorionP.Value at risk:The new benchmark for managing financial[M]. 3rd ed.New York:McGraw-Hill, 2006.
[3] Rockafellar RT, Uryasev S.Optimization of conditional value-at-Risk[J]. The Journal of Risk, 2000, 2(3):21-41.
[4] Chopra V K, Hensel C R. Turner A L, Massaging mean-variance inputs:Returns from alternative investment strategies in the 1980s[J]. Management Science,1993,39(7):845-855.
[5] Michaud R O. The markowitz optimization enigma:Is optimized optimal[J]. Financial Analysts Journal,1989,45(1):31-42.
[6] Harvey C R,Liechty J C. Liechty M W. Bayes vs. resampling:A rematch[J]. Journal of Investment Management,2008,(1):29-45.
[7] Black F, Litterman R. Global portfolio optimization[J]. Financial Analysts Journal, 1992, 48(5):28-43.
[8] Satchell S, Scowcroft A. A Demystification of the Black-Litterman Model:Managing Quantitative and Traditional Construction[J].Journal of Asset Management,2000,1(2):138-150.
[9] Herold U.Portfolio construction with qualitative forecasts[J].Journal of Portfolio Management,2003,30(1):61-72.
[10] Chiarwongse A, Kiatsupaibul S, Tirapat S, et al. Portfolio selection with qualitative input[J]. Journal of Banking & Finance, 2012, 36(2):489-496.
[11] Giacometti R, Bertocchi M, Rachev S T, et al. Stable distributions in the Black-Litterman approach to asset allocation[J]. Quantitative Finance, 2007, 7(4):423-433.
[12] Idzorek T.A step-by-step guide to the Black-Litterman model:Incorporating user-specified confidence eevels[M]//Satchell S, Ebrary I. Forecasting expected returns in the financial markets, Academic press, 2002, 17-38.
[13] Bertsimas D, Gupta V.PaschalidisI. Inverse optimization:A new perspective on the Black-Litterman model[J]. Operations Research 2012, 60(6):1389-1403.
[14] Xiao Yugu, Valdez E A. A Black-Litterman asset allocation model under Elliptical distributions[J]. Quantitative Finance, 2015, 15(3):509-519.
[15] Bessler W, Opfer H, Wolff D. Multi-asset portfolio optimization and out-of-sample performance:An evaluation of Black-Litterman, mean-variance, and naïve diversification approaches[J]. The European Journal of Finance, 2017, 23(1):1-30.
[16] Walters J. The Black-Litterman model in detail[R]. Working Paper, Boston University, 2014.
[17] 孟勇. B-L模型的保险资金投资多元化问题研究——从行为投资组合角度[J]. 保险研究, 2011,(8):52-56.
[18] 黄琼,朱书尚,姚京. 投资组合策略的有效性检验:基于中国市场的实证分析[J]. 管理评论. 2011,23(7):3-10.
[19] 蒋崇辉,马永开,安云碧. 市场、策略与国际投资利益:基于中国投资者的视角实证分析[J].系统工程理论与实践, 2012, 32(4):693-703.
[20] 孟勇. 基于Black-litterman模型的外汇储备资产投资策略研究——基于行为金融观点[J]. 华南理工大学学报:社会科学版, 2012,14(1):30-35.
[21] 尹力博韩立岩. 国际大宗商品资产行业配置研究[J]. 系统工程理论与实践, 2014, 34(3):560-574.
[22] Hlouskova J, Schmidheiny K, Wagner M. Multistep predictions for multivariate GARCH models:Closed form solution and the value for portfolio management[J]. Journal of Empirical Finance, 2009, 16(2):330-336.
[23] Mcaleer M, daVeiga B. Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model[J]. Journal of Forecasting, 2008, 27(1):1-19.
[24] Lu Xunfa, Lai K K, Liang Liang. Portfolio value-at-risk estimation in energy futures markets with time varying copula-GARCH model[J]. Annals of operations research, 2014, 219(1):333-357.
[25] Engle RF. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation[J].Econometrica,1982,50(4):978-1008.
[26] Bollerslev T.Generalized autoregressive conditional Heterosce dasticity[J]. Journal of Econometrics,1986,31(3):307-327.
[27] Best M J, Grauer R R. On the sensitivity of mean-variance efficient portfolios to changes in asset means:some analytical and computational results[J]. Review of Financial Studies,1991,4(2):315-342.
[28] Jobson J D, Korkie B M. Performance hypothesis testing with the Sharpe and Treynor measures[J]. Journal of Finance,1981, 36(4):889-908.
[29] Memmel C. Performance hypothesis testing with the Sharpe ratio[J]. Finance Letters, 2003,1(1):21-23.
[30] 许启发, 周莹莹, 蒋翠侠. 带有范数约束的CVaR高维组合投资决策[J].中国管理科学,2017, 25(2):40-49.
[31] 王增文. 经济新常态下中国社会保障基金均衡投资组合策略及决定因素分析——基于沪深两市数据的比较[J]. 中国管理科学,2017, 25(8):30-38.