主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

考虑需求波动的单元装配系统构建问题的多目标模型

展开
  • 1. 东北财经大学管理科学与工程学院, 辽宁 大连 116025;
    2. 东南大学经济管理学院, 江苏 南京 210096

收稿日期: 2017-01-13

  修回日期: 2017-08-30

  网络出版日期: 2018-06-22

基金资助

国家自然科学基金资助项目(71420107028,71390333)

Multi-Objective Optimization Model for Seru Production System Formation Considering Demand Fluctuation

Expand
  • 1. School of Management Science & Engineering, Dongbei University of Finance and Economics, Dalian 116025, China;
    2. School of Economics & Management, Southeast University, Nanjing 210096, China

Received date: 2017-01-13

  Revised date: 2017-08-30

  Online published: 2018-06-22

摘要

顾客个性化需求的增强导致企业需要应对动态变化的市场需求,在非确定性需求的环境下提升生产效率和应变能力。日本式单元装配模式以其较高的生产效率和柔性已经逐步成为应对多品种小批量需求的生产方式。由于现有研究多集中于确定性需求,本文针对日本式单元系统构建问题的特点,考虑需求波动的情境下流水线装配向单元装配系统转化问题,构建单元装配系统转化的多目标优化模型。该模型以最小化总加工周期的期望和方差为目标,决策单元装配系统的构建方案,以提升需求波动情境下系统的稳定性和对需求波动的应变能力。根据问题特点设计基于NSGA-Ⅱ的优化算法求解大规模问题,并结合文献数据说明了模型的应用。数值算例验证了方法的有效性,结果表明考虑需求波动情境下的单元系统构建可以提升生产系统应对波动需求的能力以及稳定性。

本文引用格式

王晔, 唐加福, 赵林度 . 考虑需求波动的单元装配系统构建问题的多目标模型[J]. 中国管理科学, 2018 , 26(4) : 57 -66 . DOI: 10.16381/j.cnki.issn1003-207x.2018.04.007

Abstract

With the increasing of demand diversification, manufacturing enterprises encounter challenges of demand uncertainty and fluctuation. Japanese Seru (Japanese style assembly cell) production system (SPS) has received more attention with its efficiency and flexibility especially under uncertain demand. More researches focus on how to implement Seru production system appropriately. However,most of current research focus on the deterministic demand. To enrich the research in this field, a line-Seru conversion problem is investigated in this paper. Considering the fluctuation of product demand, a multi-objective optimization model of line-Seru conversion problem is developed to minimize the expectation and variance of make span (MS). The minimized expectation of make span offers quick response to a production system with fast delivery. The minimized variance of make span represents the high system stability. The aim of this paper is to offer a method for formulating a robust Seru production system which can ultimately deal with the fluctuation of product demand. In order to obtain optimal solutions of this NP-Hard problem, an NSGA-Ⅱ (non-dominated sorting genetic algorithm Ⅱ) based algorithm is developed.Combining the benchmark data from Yu Yang et al[18] with fluctuation factors,numerical experiments are conducted to prove the effectiveness of the model and illustrate how to implement the method. The experiment results show that both delivery time and stability of SPS will be improved with considering the demand fluctuation. At the same time, performance of the system will decline with the increasing of batch size.

参考文献

[1] DTTL. 2016 Global Manufacturing Competitiveness Index[EB/OL].[2016-8-1]. http://www2.deloitte.com/global/en/pages/manufacturing/articles/global-manufacturing-competitiveness-index.html.

[2] 徐辉, 侯建明. 需求不确定条件下的制造商订单分配模型[J]. 中国管理科学, 2016,24(3):80-88.

[3] 李稚, 谭德庆. 爱尔朗型按订单装配系统最优生产——库存控制策略研究[J]. 中国管理科学, 2016,24(6):61-69.

[4] 李群霞, 马风才, 张群. 供应链提前期供需联合优化库存模型研究[J]. 中国管理科学, 2015,23(4):117-122.

[5] 叶涛锋, 达庆利, 徐宣国. 需求与提前期不确定下的生产-销售协调[J]. 中国管理科学, 2016,24(10):133-140.

[6] 曹惺璧. 佳能细胞式生产方式[J]. 北大商业评论, 2010,(8):132-137.

[7] Yin Yong, Kaku I, Stecke K E. The evolution of seru production systems throughout canon[J]. Operations Management Education Review, 2008,(2):27-40.

[8] 刘晨光, 廉洁, 李文娟, 等. 日本式单元化生产——生产方式在日本的最新发展形态[J]. 管理评论, 2010,22(5):93-103.

[9] Stecke K E, Yin Yong, Kaku I, et al. Seru:The organizational extension of JIT for a super-talent factory[J]. International Journal of Strategic Decision Sciences, 2012,3(1):106-119.

[10] Villa A, Taurino T. From JIT to Seru, for a production as lean as possible[M]//AguilarMartin J J, YagueFabra J A. Procedia Engineering. AMSTERDAM:ELSEVIER SCIENCE BV, 2013:956-965.

[11] Isa K, Tsuyoshi T. Cell production and workplace innovation in Japan:toward a new model for Japanese manufacturing?[J]. Industrial Relations, 2002,41(4):548-578.

[12] Sakazume Y. Is Japanese cell manufacturing a new system?:a comparative study between Japanese cell manufacturing and cellular manufacturing[J]. Journal of Japan Industrial Management Association, 2005,55(6):341-349.

[13] Kaku I, Gong Jun, Tang Jiafu, et al. Modeling and numerical analysis of line-cell conversion problems[J]. International Journal of Production Research, 2009,47(8):2055-2078.

[14] Kaku I, Murase Y, Yin Yong. A study on human tasks related performances of converting conveyor assembly line to cellular manufacturing[J]. European Journal of Industrial Engineering, 2008,2(1):17-34.

[15] Liu Chenguang, Li Wenjuan, Lian Jie, et al. Reconfiguration of assembly systems:From conveyor assembly line to serus[J]. Journal of Manufacturing Systems, 2012,31(3):312-325.

[16] Liu Chenguang, Yang Na, Li Wenjuan, et al. Training and assignment of multi-skilled workers for implementing seru production systems[J]. The International Journal of Advanced Manufacturing Technology, 2013,69(5-8):937-959.

[17] Yu Yang, Gong Jun, Tang Jiafu, et al. How to carry out assembly line-cell conversion? A discussion based on factor analysis of system performance improvements[J]. International Journal of Production Research, 2012,50(18):5259-5280.

[18] Yu Yang, Tang Jiafu, Gong Jun, et al. Mathematical analysis and solutions for multi-objective line-cell conversion problem[J]. European Journal of Operational Research, 2014,236(2):774-786.

[19] Yu Yang, Tang Jiafu, Sun Wei, et al. Reducing worker(s) by converting assembly line into a pure cell system[J]. International Journal of Production Economics, 2013,145(2):799-806.

[20] Yu Yang, Tang Jiafu, Sun Wei, et al. Combining local search into non-dominated sorting for multi-objective line-cell conversion problem[J]. International Journal of Computer Integrated Manufacturing, 2013,4(26):316-326.

[21] 于洋, 唐加福, 宫俊. 通过生产线向单元转化而减人的多目标优化模型[J]. 东北大学学报(自然科学版), 2013,34(1):17-20.

[22] Srinivas N, Deb K. Muiltiobjectiveoptimization using nondominated sorting in genetic algorithms[M]. Cambridge, Massachusetts:MIT Press, 1994.

[23] Ali M, Siarry P, Pant M. An efficient differential evolution based algorithm for solving multi-objective optimization problems[J]. European Journal of Operational Research, 2012,217(2):404-416.

[24] Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for pareto multiobjective optimisation[C]//Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, Washington, DC, USA, July 6-9, 1999.

[25] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.

[26] Davis L. Applying adaptive algorithms to epistatic domains[C]//In Proceedings of International Joint Conference on Artificial Intelligence, Los Angeles, USA:1985.
文章导航

/