主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

需求分布规律变化情况下的报童订货策略

展开
  • 1. 东南大学经济管理学院, 江苏 南京 210096;
    2. 淮阴师范学院经济管理学院, 江苏 淮安 223300;
    3. UQ Business School, The University of Queensland, Brisbane, Australia 4072

收稿日期: 2017-01-13

  修回日期: 2017-12-07

  网络出版日期: 2018-06-22

基金资助

国家自然科学基金重点项目(71531004);国家自然科学基金重大项目(71390335)

Newsvendor Decision-making under Uncertainty of Demand Distribution

Expand
  • 1. School of Economics and Management, Southeast University, Nanjing 210096, China;
    2. School of Economics and Management, Huaiyin Normal University, Huaian 223300, China;
    3. UQ Business School, The University of Queensland, Brisbane 4072, Australia

Received date: 2017-01-13

  Revised date: 2017-12-07

  Online published: 2018-06-22

摘要

在需求分布规律变化情况下,报童在进行订货决策时会因为错误判断需求分布规律而导致期望库存成本增加。为了解决这一问题,本文集成传统历史需求信息和非传统需求信息以正确地认知需求分布规律,在此基础上决策订货量。假设需求服从均值不同、方差相同的两种类型的正态分布,每一种正态分布的概率已知。利用信号检测理论构建基于历史需求信息与需求分布概率的报童最优订货策略,并与只基于需求分布概率的直觉规则订货策略进行对比。结果表明:只要排除需求分布概率很大或很小两种极端情况,最优订货策略比直觉规则订货策略在控制期望库存成本方面的作用更明显,即利用历史需求信息可以有效修正报童对实际需求分布的检测结果,从而提高实际订货决策的准确性。研究结果对传统历史需求信息和非传统需求信息的集成以及需求信息交换等有一定的管理学启示和应用价值。

本文引用格式

王海燕, 隽志如, Henry Xu . 需求分布规律变化情况下的报童订货策略[J]. 中国管理科学, 2018 , 26(4) : 22 -29 . DOI: 10.16381/j.cnki.issn1003-207x.2018.04.003

Abstract

When ordering under uncertainty of demand distribution, a newsvendor may make wrong judgments of demand distribution, which raises expected inventory costs. How to identify the demand distribution and make right inventory decisions is the main concern of this paper. Assume that the demand follows two different types of normal distribution, which have the same variance but different means. By introducing signal detection theory, an optimal ordering strategy is proposed based on historical demand information and nontraditional demand information to minimize inventory costs for the newsvendor, and it is compared with the intuition rule merely based on the probability of demand distribution. The results show that, excluding the two extreme cases where the probability of demand distribution is either too large or too small, the proposed optimal strategy is better than the intuition rule in controlling inventory costs. It means that with few historical demand information, the newsvendor can effectively adjust the result of demand distribution detection and thus improve his order decisions. Also, the managerial implications of this study in relation to the integration of historical demand information and nontraditional demand information and the exchange of demand information are discussed.

参考文献

[1] Tokar T, Aloysius J, Williams B, et al. Bracing for demand shocks:An experimental investigation[J]. Journal of Operations Management, 2014, 32(4):205-216.

[2] O'Neil S, Zhao Xuying, Sun D, et al. Newsvendor problems with demand shocks and unknown demand distributions[J]. Decision Sciences, 2016, 47(1):125-156.

[3] Levi R, Roundy RO, Shmoys DB. Provably near-optimal sampling-based policies for stochastic inventory control models[J]. Mathematics of Operations Research,2007, 32(4):821-839.

[4] 宋华明, 杨慧, 罗建强, 等. 需求预测更新情形下的供应链Stackelberg博弈与协调研究[J]. 中国管理科学, 2010, 18(4):86-92.

[5] 陈敬贤,孟庆峰. 应对突发事件的库存共享策略[J]. 中国管理科学,2015, 23(4):65-72.

[6] 张欢,汪贤裕. 虚拟第三方控制下供应链对突发事件的协调研究[J]. 中国管理科学,2010,18(1):66-71.

[7] 徐贤浩, 邓晨, 彭红霞. 基于供应链金融的随机需求条件下的订货策略[J]. 中国管理科学, 2011, 19(2):63-70.

[8] Massey C, Wu G. Detecting regime shifts:The causes of under-and overreaction[J]. Management Science, 2005, 51(6):932-947.

[9] Kremer M, Moritz B, Siemsen E. Demand forecasting behavior:system neglect and change detection[J]. Management Science, 2011, 57(10):1827-1843.

[10] 冯芷艳,郭迅华,曾大军,等. 大数据背景下商务管理研究若干前沿课题[J]. 管理科学学报,2013, 16(1):1-9.

[11] Xie K L, Zhang Z Lili, Zhang Ziqiong. The business value of online consumer reviews and management response to hotel performance[J]. International Journal of Hospitality Management, 2014, 43(1):1-12.

[12] Nassirtoussi A K, Aghabozorgi S, Wah T H, et al. Text minings of news-headlines for FOREX market prediction:A multi-layer dimension reducing algorithm with semantics and sentiment[J]. Expert Systems with Applications, 2015, 42(1):306-324.

[13] McAfee A, Brynjolfsson E. Big data:The management revolution[J]. Harvard Business Review, 2012, 90(10):60-68.

[14] Murphy A H. The early history of probability forecasts:Some extensions and clarification[J]. Weather and Forecasting, 1998, 13(1):5-15.

[15] Arrow K J, Harris T, Marschak J. Optimal inventory policy[J]. Econometrica, 1951,19(3):250-272.

[16] Azoury K S. Bayes solution to dynamic inventory models under unknown demand distribution[J]. Management Science, 1985, 31(9):1150-1160.

[17] Scarf H. Bayes solutions of the statistical inventory problem[J]. The Annals Mathematical Statistics, 1959, 30(2):490-508.

[18] Godfrey G A, Powell W B. An adaptive, distribution-free algorithm for the Newsvendor problem with censored demands, with applications to inventory and distribution[J]. Management Science, 2001, 47(8):1101-1112.

[19] Fisher M, Raman A. Reducing the cost of demand uncertainty through accurate response to early sales[J]. Operations Research, 1996, 44(1):87-99.

[20] Goodwin P. Intergrating management judgment and statistical forecast to improve short-term forecast[J]. Omega:The International Journal of Management Science, 2002, 30(2):127-135.

[21] Arora S, Taylor JW. Short-term forecasting of anomalous load using rule-based triple seasonal methods[J]. IEEE Transactions on Power Systems, 2013, 28(3):3235-3242.

[22] 高山晟. 经济学中的分析方法(第一版)[M].北京:中国人民大学出版社,2013.

[23] Dvoretzky A, Kiefer J, Wolfowitz J. The inventory problem:I. Case of known distributions of demand[J]. Econometrica, 1952, 20(2):187-222.

[24] Dvoretzky A, Kiefer J, Wolfowitz J. The inventory problem:Ⅱ. Case of unknown distributions of demand[J]. Econometrica, 1952, 20(3):450-466.

[25] Karlin S, Scarf H. Inventory models of the arrow-harris-marschak type with time lag[M]//Arrow K J, Karlin S, Scarf H. Studies in the mathematical theory of inventory and production, Palo Alto, CA:Standford University Press, 1958.

[26] Hayes R H. Statistical estimation problems in inventory control[J]. Management Science, 1969, 15(11):686-701.

[27] Liyanage L H, Shanthikumar J G. A practical inventory control policy using operational statistics[J]. Operations Research Letters, 2005, 33(4):341-348.

[28] Wu Jianghua. Quantity flexibility contracts under Bayesian updating[J]. Computers & Operations Research, 2005, 32(5):1267-1288.

[29] Janssen E, Strijbosch L, Brekelmans R. Assessing the effects of using demand parameters estimates in inventory control and improving the performance using a correction function[J]. International Journal of Production Economics, 2009, 118(1):34-42.

[30] Yue Jinfeng, Wang M C, Chen Bintong. Mean-range based distribution-free procedures to minimize "overage" and "underage" costs[J]. Europe Journal of Operations Research, 2007, 176(2):1103-1116.

[31] Gülplnar N, Pachamanova D, Çanako?lu E. Robust strategies for facility location under uncertainty[J]. European Journal of Operational Research, 2013, 225(1):21-35.

[32] Kunnumkal S, Topaloglu H. Using stochastic approximation methods to compute optimal base-stock levels in inventory control problems[J]. Operations Research, 2008, 56(3):646-664.

[33] Huh W T, Rusmevichientong P. A nonparametric asymptotic analysis of inventory planning with censored demand. Math[J]. Operations Research, 2009, 34(1):103-123.

[34] 隽志如,王海燕. 基于需求分布突变检测的两阶段库存管理方法[J]. 系统工程学报. 2013. 28(5):651-659.

[35] Lynn S K, Barrett L E. "Utilizing" signal detection theory[J]. Psychological Science, 2014, 25:1663-1673.
文章导航

/