主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

国际金融危机潜在传染源的识别及其传染力分析

展开
  • 1. 吉林大学数量经济研究中心, 吉林 长春 130012;
    2. 吉林大学商学院, 吉林 长春 130012

收稿日期: 2016-06-13

  修回日期: 2017-02-07

  网络出版日期: 2018-05-24

基金资助

国家社科基金一般项目(16BJY161)

The Identification of Potential Infectious Source of International Financial Crisis and the Analysis of Their Contagiousness

Expand
  • 1. Center for Quantitative Economics, Jilin University, Changchun 130012, China;
    2. Business School, Jilin University, Changchun 130012, China

Received date: 2016-06-13

  Revised date: 2017-02-07

  Online published: 2018-05-24

摘要

亚洲金融危机和希腊债务危机表明中小国家也可以引发严重危机,这种现象不容忽视。基于复杂网络理论,使用2007年国际贸易数据构建了包含148个国家和地区的全球宏观经济网络;利用S.I.R模型模拟了各国在发生不同等级的金融危机时所影响到的国家数量和经济总量,发现不同国家传染力的差异存在一定的区域特征,许多经济总量不大的国家也具有引发严重危机的潜力;使用动态聚类法对各国的传染力进行分类,处于类别1至类别4的国家为国际金融危机潜在传染源;通过计算传染力与GDP、进口和网络拓扑结构指标的Spearman相关系数发现,GDP、进口较大以及聚类系数小的国家在低危机等级时就表现出一定的负面溢出;而贸易伙伴较多以及处于网络中心位置的国家在较高的危机等级下具备引发严重危机的潜力;使用2009年的数据进行模拟,本文的主要结论依然稳健。

本文引用格式

庞晓波, 王克达 . 国际金融危机潜在传染源的识别及其传染力分析[J]. 中国管理科学, 2018 , 26(3) : 43 -50 . DOI: 10.16381/j.cnki.issn1003-207x.2018.03.005

Abstract

The Asian financial crisis and Greek debt crisis showed that small countries can lead to a severe crisis. Apart from Thailand and Greece, those countries which can trigger a regional financial crisis or international financial crisis should not be ignored. Based on complex network theory, a global macroeconomic network containing 148 countries and regions using international trade data of 2007 is constructed. Moreover, the susceptible infected recovered (S.I.R) epidemic model with a changeable probability of infection is utilized to simulate the financial crisis transmitting through network. By this method, the number of countries and the aggregate economic volume that different countries will affect in different crisis levels can be obtained according to which countries are classified in six categories using dynamic clustering method. By calculating the Spearman correlation coefficients between contagiousness and GDP, import volume and index of network topology comprising degree, closeness centrality, betweenness centrality and clustering coefficients, the major influence factors that can explain the difference of contagiousness are explored. The results show that there is region feature in the difference of contagiousness and many countries with lower GDP can lead to a severe crisis. Countries located in category 1 to category 4 in the global macroeconomic network are potential infectious source. Countries with higher GDP and import will lead to negative spillover when a small crisis occurs, while countries with more trade partners and in the center of the network have the potential to lead to a severe crisis. Then the financial crisis transmitting through network of 2009 is simulated and the results pass the robust test. In this paper, the conclusions make for discovering countries which should be concerned and building a global early warning system to watch for future financial crisis.

参考文献

[1] Krugman P. Bubble, boom, crash:Theoretical notes on Asia's crisis[R].Cambridge,Massachusetts:MIT mimeo, 1998.

[2] Masson P. Contagion:Macroeconomic models with multiple equilibria[J]. Journal of International Money and Finance, 1999, 18(4):587-602.

[3] Calvo G A, Mendoza E G. Rational contagion and the globalization of securities markets[J]. Journal of International Economics, 2000, 51(1):79-113.

[4] Kodres L E, Pritsker M. A rational expectations model of financial contagion[J]. The Journal of Finance, 2002, 57(2):769-799.

[5] Forbes K J, Rigobon R. No contagion, only interdependence:Measuring stock market comovements[J]. The Journal of Finance, 2002, 57(5):2223-2261.

[6] Yiu M S, Alex Ho W Y, Choi D F. Dynamic correlation analysis of financial contagion in Asian markets in global financial turmoil[J]. Applied Financial Economics, 2010, 20(4):345-354.

[7] 李刚,潘浩敏,贾威. 金融危机传染路径的空间统计分析[J]. 统计研究,2009,26(12):81-87.

[8] 陆静,郑晗. 次贷危机期间国际资本市场传染效应研究[J].国际金融研究,2012,(5):83-91.

[9] 叶五一, 李飞, 缪柏其. 基于局部相关系数的美国次贷危机传染分析[J]. 数理统计与管理, 2016, 35(3):525-535.

[10] 张一,刘志东. 异质交易行为主体下的金融传染机制及效应研究[J]. 中国管理科学,2017,25(9):37-45.

[11] Gai P, Kapadia S. Contagion in financial networks[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010,466(2120):2401-2423.

[12] Elliott M, Golub B, Jackson M O. Financial networks and contagion[J]. The American Economic Review, 2014, 104(10):3115-3153.

[13] Kali R, Reyes J. Financial contagion on the international trade network[J]. Economic Inquiry, 2010, 48(4):1072-1101.

[14] 陈国进,马长峰. 金融危机传染的网络理论研究述评[J].经济学动态,2010,(2):116-120.

[15] 邓超,陈学军. 基于复杂网络的金融传染风险模型研究[J]. 中国管理科学,2014,22(11):11-18.

[16] 欧阳红兵,刘晓东. 中国金融机构的系统重要性及系统性风险传染机制分析——基于复杂网络的视角[J]. 中国管理科学,2015,23(10):30-37.

[17] 庞晓波,王姗姗,陈守东. 欧债危机对全球及中国传染性的测度分析——基于复杂网络的模拟研究[J]. 世界经济研究,2015,(12):35-46.

[18] Bae K H, Karolyi G A, Stulz R M. A new approach to measuring financial contagion[J]. Review of Financial studies, 2003, 16(3):717-763.

[19] Kaminsky G L, Reinhart C M. On crises, contagion, and confusion[J]. Journal of International Economics, 2000, 51(1):145-168.

[20] Kaminsky G L, Reinhart C. The center and the periphery:the globalization of financial turmoil[R]. Cambridge, Massachusetts:National Bureau of Economic Research, 2003.

[21] Claessens S, Forbes K. International financial contagion:An overview of the issues and the book[M]Boston, Massachusetts:Springer US, 2001.

[22] Abeysinghe T, Forbes K. Trade linkages and output-multiplier effects:A structural VAR approach with a focus on Asia[J]. Review of International Economics, 2005, 13(2):356-375.

[23] Haile F, Pozo S. Currency crisis contagion and the identification of transmission channels[J]. International Review of Economics & Finance, 2008, 17(4):572-588.

[24] Van Rijckeghem C, Weder B. Sources of contagion:Is it finance or trade?[J]. Journal of International Economics, 2001, 54(2):293-308.

[25] Kermack W O, McKendrick A G. A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1927, 115(772):700-721.

[26] Newman M E J. Spread of epidemic disease on networks[J]. Physical review E, 2002, 66(1):016128.

[27] Kamp C, Moslonka-Lefebvre M, Alizon S. Epidemic spread on weighted networks[J]. PLoS Computational Biology, 2013, 9(12):e1003352.

[28] Garas A, Argyrakis P, Rozenblat C, et al. Worldwide spreading of economic crisis[J]. New journal of Physics, 2010, 12(11):113043.
文章导航

/