主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于Frank-Copula贝叶斯估计的系统性风险对样本标度的敏感性分析

展开
  • 1. 东北财经大学金融学院, 辽宁 大连 116023;
    2. 东北财经大学投资工程管理学院, 辽宁 大连 116023

收稿日期: 2016-06-08

  修回日期: 2017-06-13

  网络出版日期: 2018-03-19

基金资助

国家自然科学基金资助项目(11226250,71273042,71373038);辽宁省教育厅人文社科青年项目(LN2017QN008,20170074);教育部人文社会科学研究青年基金项目(16YJCZH156)

Investment Horizon, System Risk Value and the Sensitive Effect

Expand
  • 1. School of Finance, Dongbei Univeristy of Financial & Economics, Dalian 116012, China;
    2. Investemnt Project Management Institute, Dongbei University of Financial & Economics, Dalia 116023, China

Received date: 2016-06-08

  Revised date: 2017-06-13

  Online published: 2018-03-19

摘要

研究表明数据样本标度的选取对系统性风险估计结果具有直接影响,本文基于150只A股样本数据构建25组投资组合,通过Copula贝叶斯估计方法获得系统风险β与投资标度比λ无信息先验的联合后验分布,对系统风险β与投资标度比λ的影响效应进行了分析。研究表明,样本标度对我国A股市场的系统性风险值估计存在误差性影响,且该影响随着公司规模的增加而不断上升,即样本标度的选取对于大额机构投资者影响较大,但数据对于账面市值比不敏感。以月度数据为基础数据,我国市场系统性风险值与样本标度比存在弱负相关关系,相比较以机构投资者占据资本市场主流的美国数据,我国市场真实投资标度存在明显差异。

本文引用格式

赵宁, 于方坤, 由申, 汪振双 . 基于Frank-Copula贝叶斯估计的系统性风险对样本标度的敏感性分析[J]. 中国管理科学, 2018 , 26(1) : 72 -80 . DOI: 10.16381/j.cnki.issn1003-207x.2018.01.007

Abstract

The effects of investment horizon on the estimate of the systematic risk are first investigated by Brennan et al,(2012). In general, the true investment horizon is unknown. The empirical work will overestimate the coefficient of the systematic risk based on the observed horizon. The copula Bayesian estimation approach is proposed to get the posterior distribution of the coefficients of the system risk beta and the investment horizon ratio gama in the Fama-French three factor model. The potent problem of the traditional Bayesian estimation is that the assumption of normal likelihood function ignores some fluctuations such as high peak and fat tail relative to kurtosis and skewness, which have been frequently, reported in financial data analyses. The copula Bayesian approach instead of the traditional Bayesian estimation is built to consider the pattern of the data with the strong correlation and the non-normal distributions. The reason why the copula function is chosen is to fit the pattern of the data. In the empirical work,the interaction of the system risk and the investment horizon is analyzed in 25 portfolios from 150 different data. Compared with the U.S. data, the correlation of the systemic risk and investment horizon is negative, and the frequency of the true horizon is higher than observed one in China. With the increase of the size of the company, the effect of the investment horizon is obviously magnified. And the appearance leads to the estimation bias of the systemic risk.

参考文献

[1] Brennan M J, Zhang Yuzhao, Capital asset pricing with a stochastic horizon[R]. Working Paper. University of California, 2012.

[2] 林建浩,李幸,李欢. 中国经济政策不确定性与资产定价关系实证研究[J]. 中国管理科学,2014,22(S1):222-226.

[3] 简志宏, 李彩云. 系统性跳跃风险与贝塔系数时变特征[J]. 中国管理科学, 2013,21(03):20-27.

[4] Longstaff F A. Temporal aggregation and the continuous-time capital asset pricing model[J]. Journal of Finance, 1989,44(4):871-887.

[5] Lee C F, Patro D K,Liu Bo. Functional forms for performance evaluation:Evidence from closed-end country funds[M]//Lee C F,Lee A C,Lee J. Handbook of quantitative finance and risk management, 2010:1523-1553.

[6] Handa P, Kothari S P, Wasley C. Sensitivity of multivariate tests of the capital asset-pricing model to the return measurement interval[J]. Journal of Finance, 1993, 48(4):1543-1551.

[7] Kamara A, Korajczyk R A, Lou Xiaoxia, et al. Horizon pricing[J]. Journal of Financial and Quantitative Analysis, 2015, 51(6):1769-1793.

[8] Darollesa S, Gourierouxb C. Conditionally fitted Sharpe performance with an application to hedge fund rating[J]. Journal of Banking & Finance, 2010, 34(3):578-593.

[9] Lina C, Liub Y. Genetic algorithms for portfolio selection problems with minimum transaction lots[J]. European Journal of Operational Research, 2008, 185(1):393-404.

[10] Lin W T, Chen Y H. Investment horizon and beta coefficient[J]. Journal of Business Research, 1990, 21(1):19-37.

[11] 杨宏林, 张兴全,多标度投资组合绩效度量非系统误差及校正[J]. 系统工程理论与实践, 2013, 33(9):2187-2194.

[12] 赵宁,Lin W T,孙雪卿,基于Copula贝叶斯估计的风险值行业差异[J]. 数学的实践与认识,2015, 45(10):17-27.

[13] 邓超, 陈学军, 基于多主体建模分析的银行间网络系统性风险研究[J]. 中国管理科学, 2016,24(01):67-75.

[14] Darollesa S, Gourierouxb C. Conditionally fitted Sharpe performance with an application to hedge fund rating[J]. Journal of Banking & Finance, 2010,34(3):578-593.

[15] Shih Y C, Chen S S, Lee C L, et al. The evolution of capital asset pricing models[J].Review of Quantitative Finance and Accounting 2014, 42(3):415-448.
文章导航

/