主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

区间值最小二乘核仁解及在供应链合作利益分配中的应用

展开
  • 1. 福州大学经济与管理学院工商管理研究院, 福建 福州 350116;
    2. 福建农林大学交通与土木工程学院, 福建 福州 350002

收稿日期: 2016-04-15

  修回日期: 2016-09-24

  网络出版日期: 2018-02-10

基金资助

国家自然科学基金重点资助项目(71231003);国家自然科学基金资助项目(71171055);福建省软科学研究计划项目(2016R0012);福建省社会科学规划项目(2013C024);福建省中青年教师教育科研项目(JA13122);福建农林大学高水平大学建设重点资助项目(113-612014018)

Interval-Valued Least Square Nucleolus and Its Application in Cooperative Profit Allocation of Supply Chain

Expand
  • 1. Institute of Business Administration, School of Economics and Management, Fuzhou University, Fuzhou 350116, China;
    2. School of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received date: 2016-04-15

  Revised date: 2016-09-24

  Online published: 2018-02-10

摘要

针对合作对策中联盟值(或特征函数)常表示为区间值而非实数的现象,提出两种新的二次规划求解方法,该方法能快速、有效的获得n人区间值合作对策的区间值最小二乘预核仁解和核仁解。首先,利用反映联盟不满意度的平方超量eSx)=(υLS)-xLS))2+(υRS)-xRS))2,构建求解区间值最小二乘预核仁解的二次规划模型,据此确定每个局中人的区间值分配xiE*=[xLiE*xRiE*](i∈N)。其中,xLiE*=(υLN))/n+1/(n2n-2)(naLiυ)-???20171209???aLjυ)),xRiE*=(υRN))/n+1/(n2n-2)(naRiυ)-???20171209???aRjυ))(i∈N)。接着,考虑个体合理性,拓展所导出的数学优化模型,获得区间值最小二乘核仁解。然后,讨论最小二乘预核仁解和核仁解的一些重要性质,如,存在性和唯一性、有效性、可加性、对称性、匿名性,等。最后,利用供应链合作利益分配的数学算例验证所提出的二次规划模型和方法的合理性、有效性和优越性。

本文引用格式

刘家财, 李登峰, 胡勋锋 . 区间值最小二乘核仁解及在供应链合作利益分配中的应用[J]. 中国管理科学, 2017 , 25(12) : 78 -87 . DOI: 10.16381/j.cnki.issn1003-207x.2017.12.009

Abstract

Due to the character that values (or characteristic functions) of coalitions of players are usually expressed with intervals rather than real numbers in real situations, two quadratic programming methods are proposed, which can quickly and effectively compute n-person interval-valued least square prenucleolus and nucleolus of interval-valued cooperative games. In this methodology, based on the square excess e(S,x)=(υL(S)-xL(S))2+(υR(S)-xR(S))2 which can be interpreted as a measure of the dissatisfaction of the coalitions, the quadratic programming model is firstly constructed for interval-valued least square prenucleolus of interval-valued cooperative games and obtain players' interval-valued imputations xiE*=[xLiE*,xRiE*](i∈N), where xLiE*=(υL(N))/n+1/(n2n-2)(naLi(υ)-???20171209???aLj(υ)),xRiE*=(υR(N))/n+1/(n2n-2)(naRi(υ)-???20171209???aRj(υ))(i∈N). Then, taking into account the individual rationality, the aforementioned optimization mathematical model is extended and all players' interval-valued least square nucleolus is solued. Moreover, some useful properties of the interval-valued least square prenucleolus and nucleolus are discussed,such as existence and uniqueness, efficiency, additivity, symmetry, and anonymity. Finally, the quadratic programming models and methods are illustrated with a numerical example about the optimal profit allocation of supply chain and the computational result is analyzed to show the validity, applicability, and advantages.

参考文献

[1] 李登峰.模糊多目标多人决策与对策[M].北京:国防工业出版社,2003.

[2] Branzei R, Dimitrov D, Tijs S. Models in cooperative game theory:Crisp, fuzzy and multichoice games[M]. Berlin,Heidelberg:Springer,Verlag,2005.

[3] Butnariu D. Stability and shapley value for an n-person fuzzy game[J]. Fuzzy Sets and Systems, 1980, 4(1):63-72.

[4] Mares M. Fuzzy cooperative games:Co-operation with vague expectations[M]. Heidelberg:Physica-Verlag, 2001.

[5] Li Dengfeng. Decision and game theory in management with intuitionistic fuzzy sets[M]. Heidelberg:Springer-Verlag, 2012.

[6] 李登峰.直觉模糊集决策与对策分析方法[M].北京:国防工业出版社,2012.

[7] Aubin J P. Coeur et valeur des jeux flous à paiements latéraux[J]. C. R. Acad. Sci. Paris Sér. A, 1974, 279(A):891-894.

[8] Hinojosa M A, Mármol A M, Fernández F R. Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game[J]. European Journal of Operational Research, 2013, 225(1):85-90.

[9] Borkotokey S. Cooperative games with fuzzy coalitions and fuzzy characteristic functions[J]. Fuzzy Sets and Systems, 2008, 159(2):138-151.

[10] Aubin J P. Cooperative fuzzy games[J]. Mathematics of Operations Research, 1981, 6(1):1-13.

[11] Aubin J P. Locally lipschitz cooperative games[J]. Journal of Mathematical Economics, 1981, 8(3):241-262.

[12] Branzei R, Dimitrov D, Tijs S. Convex fuzzy games and participation monotonic allocation schemes[J]. Fuzzy Sets and Systems, 2003, 139(2):267-281.

[13] Branzei R, Branzei O, Alparslan Gök S Z, et al. Cooperative interval games:A survey[J]. Central European Journal of Operations Research, 2010, 18(3):397-411.

[14] Branzei R, Alparslan Gök S Z, Branzei O. Cooperative games under interval uncertainty:On the convexity of the interval undominated cores[J]. Central European Journal of Operations Research, 2011, 19(4):523-532.

[15] Alparslan Gök S Z, Branzei O, Branzei R, et al. Set-valued solution concepts using intervaltype payoffs for interval games[J]. Journal of Mathematical Economics, 2011, 47(4-5), 621-626.

[16] Alparslan Gök S Z, Branzei R, Tijs S. The interval Shapley value:An axiomatization[J]. Central European Journal of Operations Research, 2010, 18(2), 131-140.

[17] Alparslan Gök S Z, Miquel S, Tijs S. Cooperation under interval uncertainty[J]. Mathematical Methods of Operational Research, 2009, 69(1), 99-109.

[18] Mallozzi L, Scalzo V, Tijs S. Fuzzy interval cooperative games[J]. Fuzzy sets and systems, 2011, 165(1), 98-105.

[19] Li Dengfeng. Models and methods for interval-valued cooperative games in economic management[M]. Cham, Switzerland:Springer, 2016.

[20] 于晓辉,张强.具有区间支付的合作对策的区间Shapley值[J].模糊系统与数学,2008,22(5):151-156.

[21] 高作峰,邹正兴,马栋,等.区间合作对策在增广系统上的区间Shapley值[J].模糊系统与数学,2013,27(4):148-156.

[22] Gillies D B. Some theorems on n-person games[M]. Princeton:Princeton University Press, 1953.

[23] Shapley L S, Shubik M. On the core of an economic system with externalities[J]. American Economic Review, 1969, 59(4):678-684.

[24] Schmeidler D. The nucleolus of a characteristic function game[J]. SIAM Journal on Applied Mathematics, 1969, 17(6):1163-1170.

[25] 徐伟,郑石桥,陈丹萍.闭环供应链中制造商与销售商合作创新模型研究[J].中国管理科学,2014,22(7):116-123.

[26] 程永波,陈洪转,何利芳,等.复杂装备主制造商-供应商主从合作激励协调Stackelberg模型[J].中国管理科学,2016,24(1):91-96.

[27] Moore R E. Methods and applications of interval analysis[M]. Philadelphia:Studies in Applied Mathematics, 1979.

[28] Ruiz L M, Valenciano F, Zarzuelo J M. The least square prenucleolus and the least square nucleolus. Two values for TU games based on the excess vector[J]. International Journal of Game Theory, 1996, 25(1):113-134.

[29] 钟昌宝,魏晓平,聂茂林,等.一种考虑风险的供应链利益两阶段分配法-正交投影熵值法[J].中国管理科学,2010,18(2):68-74.

[30] 赵晓丽,乞建勋.供应链不同合作模式下合作利益分配机制研究-以煤电企业供应链为例[J].中国管理科学,2007,15(4):70-76.
文章导航

/