主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于后悔理论与多Agent模拟的新产品扩散消费者决策互动行为研究

展开
  • 1. 武汉理工大学经济学院, 湖北 武汉 430070;
    2. 同济大学经济与管理学院, 上海 200090

收稿日期: 2015-03-12

  修回日期: 2016-12-30

  网络出版日期: 2018-01-31

基金资助

国家自然科学基金资助项目(71601151,71172043,71701075);中国博士后基金面上资助项目(2014M552102);湖北省自然科学基金资助项目(2014-IV-114);教育部人文社科基金青年项目资助项目(16YJC630131)

Research on Consumer Decision-making Interaction Behavior in New Product Diffusion Based on Regret Theory and Multi-Agent Simulation

Expand
  • 1. School of Economics, Wuhan University of Technology, Wuhan 430070, China;
    2. School of Economic and Management,Tongji University,Shanghai 200092,China

Received date: 2015-03-12

  Revised date: 2016-12-30

  Online published: 2018-01-31

摘要

基于后悔理论,对新产品扩散消费者决策互动行为进行多智能体模拟研究。从进化博弈视角构建了消费者决策行为模型,结合心理学与后悔理论,设计出一种综合考虑自身与邻居个性特征以及历史信息的学习规则,并用多智能体方法对消费者群体决策场景进行仿真。在仿真软件Anylogic6.5.0上进行多Agent模拟实验,模拟结果表明:(1)产品收益b越大,越有利于群体的决策状态稳定,反之,决策波动大;(2)消费者群体决策的宏观趋势由产品扩散成本和因未购买而损失的收益决定。当产品扩散成本c与因未购买而损失的收益f相当时,群体决策行为呈针锋相对态;当扩散成本较高时,拒绝占优;反之,则购买占优;(3)消费者群体间沟通学习强度影响决策波动性,强度高时,群体决策变化大,而低强度下,群体行为稳定。该研究可为新产品扩散营销策略制定提供支持,并为将心理学相关理论与演化博弈应用于Agent模型提出一个基础框架。

本文引用格式

危小超, 李岩峰, 聂规划, 陈冬林 . 基于后悔理论与多Agent模拟的新产品扩散消费者决策互动行为研究[J]. 中国管理科学, 2017 , 25(11) : 66 -75 . DOI: 10.16381/j.cnki.issn1003-207x.2017.11.007

Abstract

The dynamics of new products diffusion not only emerge partly from the interaction among heterogeneous consumers in social ecommerce, but also depend on consumers' psychology behavior. Accordingly, the psychology theory is worth being introduced to explore the evolution of new product diffusion.An agent-based simulation model is built to study the new product diffusion, based on the regret theory and evolutionary game theory, which can be used to support dynamic management for new product marketing.Firstly, an evolutionary game model is proposed to depict the interaction between consumers in social ecommerce, by extending a traditional symmetric game to a dynamic game. Then, the evolution learning rules are designed based on the regret theory, taking the historical information and neighbor characters into consideration. At last, using Anylogic 6.5.0, a multi-agent simulation system is developed, and then a series of simulation experiments are performed and analysed. Simulation results reveal that:(1) The product benefit has a positive effect on the stability of diffusion dynamics.Higher product benefit can result in more stable (volatile) in the diffusion process. (2) The new product diffusion also depends on the cost of product diffusion and the loss from adopting refuse strategy. The group will more likely have the Tit-for-Tat (retaliation) issue when the two variables are equivalent. If the diffusion cost is higher,the dominate strategy is refuse, and vice versa. (3)The communication strength of consumers in market is positively associated with the volatility of diffusion dynamics. The greater communication strength of consumers indicates more obvious volatility of diffusion, while the weaker communication strength more likely result in the stability of group behavior. This research can make some contributions to new product marketing, and provides a new framework to combine psychology theories and simulation models.

参考文献

[1] Roger EM. Diffusion of innovations[M].New York:Simon and Schuster,2010.

[2] 胡知能, 卢威, 韩冰. 新产品扩散过程中供给约束对赠样策略的影响研究[J]. 管理工程学报, 2016, 30(3):170-178.

[3] 王光辉, 刘怡君. 网络舆论危机事件的蔓延扩散效应研究[J]. 中国管理科学, 2015, 23(7):119-126.

[4] WuytsS, Dekimpe M G, Gijsbrechts E, et al. The connected customer:The changing nature of consumer and business markets[M].New York:Routledge Academic,2010.

[5] Jiang Guoyin, Tadikamalla P R, Shang J, et al. Impacts of knowledge on online brand success:An agent-based model for online market share enhancement[J]. European Journal of Operational Research, 2016, 248(3):1093-1103.

[6] Stummer C, Kiesling E, Günther M, et al. Innovation diffusion of repeat purchase products in a competitive market:An agent-based simulation approach[J]. European Journal of Operational Research, 2015, 245(1):157-167.

[7] Rahmandad H, Sterman J.Heteroneity and network structure in the dynamics of diffusion:Comparing agent-based and differential equation models[J]. Management Science,2008,54(5):998-1014.

[8] 金淳,董秋,吕苗.基于Agent的网站促销下消费者行为仿真研究[J]. 系统工程理论与实践, 2014,34(4):845-853.

[9] 于同洋,肖人彬,龚晓光.基于多智能体的网游产品扩散特性[J].系统工程理论与实践,2010, 30(5):919-927.

[10] 赵良杰,武邦涛,段文奇,等.消费者交互作用对网络效应产品扩散的影响-基于产品生命周期的视角[J].系统工程理论与实践,2012,32(1):67-75.

[11] 张华. 协同创新、知识溢出的演化博弈机制研究[J]. 中国管理科学, 2016, 24(2):92-99.

[12] Bell D E. Regret in decision making under uncertainty[J]. Operations research,1982,30(5):961-981.

[13] Loomes G, Sugden R. Regret theory:An alternative theory of rational choice under uncertainty[J]. The Economic Journal,1982,92(368):805-824.

[14] 郝晶晶, 朱建军, 刘思峰. 基于前景理论的多阶段随机多准则决策方法[J]. 中国管理科学, 2015, 23(1):73-81.

[15] Laciana C E,Weber E U.Correcting expected utility for comparisons between alternative outcomes:A unified parameterization of regret and disappointment[J].Journal of Risk and Uncertainy,2008,36(1):1-17.

[16] Chorus C G. Regret theory based route choice and traffic equilibria[J]. Transportmetrica, 2010,8(4):291-350.

[17] 于超, 樊治平. 考虑决策者后悔规避的风险投资项目选择方法[J]. 中国管理科学, 2016, 24(6):29-37

[18] 张晓,樊治平,陈发动. 基于后悔理论的风险性多属性决策方法[J]. 系统工程理论与实践, 2013,33(9):2313-2320.

[19] Simon H A. A behavioral model of rational choice[J].Quarterly Journal of Economics,1955,69(1):99-118.

[20] 危小超, 胡斌. 集成实证和定性模拟的移动增值战略匹配优化[J]. 中国管理科学, 2015, 23(1):170-176.

[21] 付秋芳, 忻莉燕, 马士华. 惩罚机制下供应链企业碳减排投入的演化博弈[J]. 管理科学学报, 2016, 19(4):56-70.

[22] 王崇, 吴价宝, 王延青. 移动电子商务下交易成本影响消费者感知价值的实证研究[J]. 中国管理科学, 2016,24(8):98-106.

[23] Bourdieu P.Distinction:A social critique of the judgement of taste[M].London:Routledge,2013.

[24] Du Wenbo B, Cao Xianbin B, HuMaobin, etal. Effects of expectation and noise on evolutionary games[J]. Physica A, 2009,388(11):2215-2220.

[25] 鲜于波, 梅琳. 间接网络效应下的产品扩散——基于复杂网络和计算经济学的研究[J]. 管理科学学报, 2009, 12(1):70-81.

[26] Grabowski A. Interpersonal interactions and human dynamics in a large social network[J]. Physica A:Statistical Mechanics and its Applications, 2007, 385(1):363-369.

[27] Delre S A. The effects of social networks on innovation diffusion and market dynamies[D]. Zurich:University of Zurich,2007.

[28] 付玓瓅,胡斌基于前景理论与多Agent模拟的KIBS员工合作与冲突行为研究[J].中国管理科学, 2013,21(3):158-168.

[29] Broder-Rodgers D, Pérez-Reche F J, Taraskin S N. Effects of local and global network connectivity on synergistic epidemics[J]. Physical Review E, 2015, 92(6):062814.
文章导航

/