本文在资本资产定价模型(CAPM)的基础上,构建包含市场风险溢价、下行风险和符号跳跃风险的新资产定价模型,并使用高频交易数据计算模型中各风险因子,研究当期和跨期的行业组合定价问题。研究表明:当期的市场风险溢价、下行风险和符号跳跃风险因子对行业组合的超额收益率有很好的解释作用,且对上证能源等周期性行业组合的解释能力强于上证消费等非周期性行业组合;而滞后一期的市场风险溢价、下行风险和符号跳跃风险因子对行业组合超额收益率的预测作用非常有限。同时,我们的研究还发现,通过AR(1)、LAR(1)、AR(3)、LAR(3)、HAR和LHAR等时间序列预测模型,运用样本外滚动窗预测技术得到市场风险溢价等因子的预测值后,构建的新跨期定价模型对行业组合有较好的定价能力。其中,HAR和LHAR对应的跨期定价模型表现最好,且它们在上证材料组合和上证公用组合中表现尤为突出。
In this paper, whether downside risk and signed jump risk have effects on pricing industry portfolios is examined. Assets pricing models with market risk premium, downside risk and signed jump risk are proposed firstly. Then, the new models are applied to study the contemporaneous/intertemporal pricing problem of industry portfolios. The results indicate that the contemporaneous market risk premium, downside risk and signed jump risk factors perform important interpretative functions for the excess return of industry portfolios. And the functions for cyclical industries are stronger than that of non-cyclical industries. However, the first-lagged market risk premium, downside risk and signed jump risk are limited in forecasting the contemporaneous excess return of industry portfolios. Furthermore, the first-order autoregressive model (AR(1) model), first-order autoregressive model with leverages (LAR(1) model), third-order autoregressive model (AR(1) model), first-order autoregressive model with leverages (LAR(3) model), heterogeneous autoregressive model (HAR model) and heterogeneous autoregressive model with leverages (LHAR model) are employed to obtain the predictive values of all risk factors, and intertemporal assets pricing models are constructed. It is found that new models show good pricing power for industry portfolios. Among them, HAR and LHAR models outperform other models, and their performances are particularly prominent for pricing the Shanghai material and public industry portfolios. The above results mean that the effects of downside risk and signed jump risk should not be ignored when pricing industry portfolios in shock market.
[1] Fama E F, French K R. Common risk factors in the returns on stocks and bonds[J]. Journal of Financial Economics, 1993, 33(1): 3-56.
[2] Acharya V V, Pedersen L H. Asset pricing with liquidity risk[J]. Journal of Financial Economics, 2005, 77(2): 375-410.
[3] Fama E F, French K R. Size, value, and momentum in international stock returns[J]. Journal of Financial Economics, 2012, 105(3): 457-472.
[4] Fama E F, French K R. A five-factor asset pricing model[J]. Journal of Financial Economics, 2015, 116(1): 1-22.
[5] Kelly B, Jiang Hao. Tail risk and asset prices[J]. Review of Financial Studies, 2014, 27(10): 2841-2871.
[6] 蒋艳辉,马超群,熊希希. 创业板上市公司文本惯性披露、信息相似度与资产定价——基于Fama-French改进模型的经验分析[J]. 中国管理科学, 2014,22(08): 56-63.
[7] 陈国进, 刘晓群, 谢沛霖, 等. 已实现跳跃波动与中国股市风险溢价研究——基于股票组合视角[J]. 管理科学学报, 2016, 19(6): 98-113.
[8] Post T, van Vliet P. Downside risk and asset pricing[J]. Journal of Banking & Finance, 2006, 30(3): 823-849.
[9] Estrada J. Mean-semivariance behavior: Downside risk and capital asset pricing[J]. International Review of Economics & Finance, 2007, 16(2): 169-185.
[10] Chen D, Chen C, Chen Jianguo. Downside risk measures and equity returns in the NYSE[J]. Applied Economics, 2009, 41: 1055-1070.
[11] Alles L, Murray L. Rewards for downside risk in Asian markets[J]. Journal of Banking & Finance, 2013, 37(7): 2501-2509.
[12] Bansal R, Shaliastovich I. Learning andasset-price jumps[J]. Review of Financial Studies, 2011, 24(8): 2738-2780.
[13] Todorov V, Bollerslev T. Jumps and betas: A new framework for disentangling and estimating systematic risks[J]. Journal of Econometrics, 2010, 157(2): 220-235.
[14] 左浩苗,刘振涛. 跳跃风险度量及其在风险—收益关系检验中的应用[J]. 金融研究, 2011(10): 170-184.
[15] Maheu J M, Mccurdy T H, Zhao Xiaofei. Do jumps contribute to the dynamics of the equity premium?[J]. Journal of Financial Economics, 2013, 110(2): 457-477.
[16] 于志军, 杨善林, 章政, 等. 基于误差校正的灰色神经网络股票收益率预测[J]. 中国管理科学, 2015, 23(12): 20-26.
[17] McLean R D, Pontiff J. Does academic research destroy stock return predictability?[J]. The Journal of Finance, 2016, 71(1): 5-32.
[18] 张贵生, 张信东. 基于近邻互信息的 SVM-GARCH 股票价格预测模型研究[J]. 中国管理科学, 2016, 24(9): 11-20.
[19] Gong Xu, Wen Fenghua, Xia X H, et al. Investigating the risk-return trade-off for crude oil futures using high-frequency data[J]. Applied Energy, 2017, 196: 152-161.
[20] Barndorff-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk— realised semivariance[Z]. Research Paper,Center for Research in Econometric Analysis of Time Series,2008.
[21] Andersen T G, Bollerslev T. Answering the Skeptics: Yes, ARCH models do provide good volatility forecasts[J]. International Economic Review, 1998, 4: 885-905.
[22] Gong Xu, He Zhifang, Li Pu, et al. Forecasting return volatility of the CSI 300 Index using the stochastic volatility model with continuous volatility and jumps[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 1-10.
[23] Wen F, Gong X, Cai S. Forecasting the volatility of crude oil futures using HAR-type models with structural breaks[J]. Energy Economics, 2016, 59: 400-413.
[24] 孙洁. 考虑跳跃和隔夜波动的中国股票市场波动率建模与预测[J]. 中国管理科学, 2014, 22(6): 114-124.
[25] 唐勇, 林欣. 考虑共同跳跃的波动建模: 基于高频数据视角[J]. 中国管理科学, 2015, 23(8): 46-53.
[26] Patton A J, Sheppard K. Good volatility, bad volatility: signed jumps and the persistence of volatility[J]. Review of Economics and Statistics, 2015, 97(3): 683-697.
[27] 唐勇. 金融资产跳跃检验方法实证比较[J]. 中国管理科学, 2012,20(S1): 290-299.