主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

中国牛市真的是“水牛”吗?——不确定性视角下股市价量关系的实证研究

展开
  • 1. 同济大学经济与管理学院, 上海 200092;
    2. 同济大学财经研究所, 上海 200092;
    3. 台湾世新大学财务金融学系, 台湾 台北 11645
王盼盼(1993-),男(汉族),安徽舒城人,同济大学经济与管理学院博士生,同济大学财经研究所助理研究员,研究方向:金融市场理论与实践、金融计量,E-mail:panpan@tongji.edu.cn.

收稿日期: 2016-08-25

  修回日期: 2017-03-22

  网络出版日期: 2017-11-24

基金资助

国家社科基金决策咨询点研究项目(13JCD009);国家社科基金一般项目(10BGJ019);上海高校智库内涵建设计划项目

The Price-Volume Relation of the Shanghai Stock Index Under the Perspective of Uncertainty

Expand
  • 1. School of Economics and Management, Tongji University, Shanghai 200092, China;
    2. Institute of Finance and Economics, Tongji University, Shanghai 200092, China;
    3. Department of Finance, Shih Hsin University, Taipei 11645, China

Received date: 2016-08-25

  Revised date: 2017-03-22

  Online published: 2017-11-24

摘要

由于我国股市时常发生大幅波动,结构变动和市场波动性因素可能会对价量关系产生重要影响。因为价量同期内生性问题,以往的实证研究通常在VAR框架下进行,但利用传统线性VAR方法无法识别价量动态关系的非对称性变动特征。为此,本文通过采用门限VAR模型,在价量关系的VAR框架中嵌入结构变化和市场波动的门限变量,研究发现:第一,在2007-2008和2014-2015年股市大幅波动期间价量关系存在显著的时间断点效应,且后者结构变化更剧烈;第二,市场不确定性(波动率)显著影响价量关系,随着波动率增加,交易量对价格影响逐渐消失,而价格对交易量的影响始终高度显著,但经济显著性也逐渐下降;最后,中国股市中价格显著引导交易量的变动,是价格拉动型而非资金推动型市场,因此"水牛"的说法并不准确。

本文引用格式

石建勋, 王盼盼, 何宗武 . 中国牛市真的是“水牛”吗?——不确定性视角下股市价量关系的实证研究[J]. 中国管理科学, 2017 , 25(9) : 71 -80 . DOI: 10.16381/j.cnki.issn1003-207x.2017.09.009

Abstract

In literature, the dynamic price-volume relation is examined by Vector Autoregression (VAR thereafter) model. In this paper, the conventional VAR approach is extended to account for the impacts of structural changes and volatility levels, which are common to China.Due to dramatic responses of China's stock market in recent years, especially two periods of considerable volatility in the years of 2007-2008 and 2014-2015, it is reasonable to conjecture that the structural changes and volatility levels could have substantial influence on the price-volume relation of Chinese stock market. The price-volume relation of the Shanghai stock market is examined with daily data from the year of 2003 to 2016, and contribution is made to the literature by estimating the price-volume relation in a VAR framework with structural breaks and volatility thresholds. As a result, more evidence and robust inferences is obtained:First, the evidence indicates that there exist significant time breaking effects. Second, the high-low volatility effects are substantially. Finally, a linear causal relation is identified from price to volume, which clearly rejects the public views.

参考文献

[1] Karpoff J M. The relation between price changes and trading volume:A survey[J]. Journal of Financial and quantitative Analysis, 1987, 22(01):109-126.

[2] Gallant A R, Rossi P E, Tauchen G. Stock prices and volume[J]. Review of Financial Studies, 1992, 5(2):199-242.

[3] Chuang C C, Kuan C M, Lin H Y. Causality in quantiles and dynamic stock return-volume relations[J]. Journal of Banking & Finance, 2009, 33(7):1351-1360.

[4] Copeland T E. A model of asset trading under the assumption of sequential information arrival[J]. The Journal of Finance, 1976, 31(4):1149-1168.

[5] Jennings R H, Starks L T, Fellingham J C. An equilibrium model of asset trading with sequential information arrival[J]. The Journal of Finance, 1981, 36(1):143-161.

[6] Epps T W, Epps M L. The stochastic dependence of security price changes and transaction volumes:Implications for the mixture-of-distributions hypothesis[J]. Econometrica, 1976:305-321.

[7] Clark P K. A subordinated stochastic process model with finite variance for speculative prices[J]. Econometrica, 1973:135-155.

[8] Campbell J Y, Grossman S J, Wang Jiang. Trading volume and serial correlation in stock returns[J]. The Quarterly Journal of Economics, 1993, 108(4):905-939.

[9] Blume L, Easley D, O'hara M. Market statistics and technical analysis:The role of volume[J]. The Journal of Finance, 1994, 49(1):153-181.

[10] Wang Jiang. A model of competitive stock trading volume[J]. Journal of political Economy, 1994, 102, (1):127-168.

[11] Liu Xinghua, Liu Xin, Liang Xiaobei. Information-driven trade and price-volume relationship in artificial stock markets[J]. Physica A:Statistical Mechanics and its Applications, 2015, 430:73-80.

[12] 翟爱梅,周彤. 基于市场参与者行为假设的股票市场量价关系研究[J]. 中国管理科学,2011, 19(04):31-37.

[13] Lee C F, Rui O M. Does trading volume contain information to predict stock returns? Evidence from China's stockmarkets[J]. Review of Quantitative Finance and Accounting, 2000, 14(4):341-360.

[14] Chen Gongmeng, Firth M, Rui O M. The dynamic relation between stock returns, trading volume, and volatility[J]. Financial Review, 2001, 36(3):153-174.

[15] Lee B S, Rui O M. The dynamic relationship between stock returns and trading volume:Domestic and cross-country evidence[J]. Journal of Banking & Finance, 2002, 26(1):51-78.

[16] Rashid A. Stock prices and trading volume:An assessment for linear and nonlinear Granger causality[J]. Journal of Asian Economics, 2007, 18(4):595-612.

[17] Pisedtasalasai A, Gunasekarage A. Causal and dynamic relationships among stock returns, return volatility and trading volume:Evidence from emerging markets in South-East Asia[J]. Asia-Pacific Financial Markets, 2007, 14(4):277-297.

[18] Azad A S M S, Azmat S, Fang V, et al. Unchecked manipulations, price-volume relationship and market efficiency:Evidence from emerging markets[J]. Research in International Business and Finance, 2014, 30:51-71.

[19] Chuang W I, Liu H H, Susmel R. The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility[J]. Global Finance Journal, 2012, 23(1):1-15.

[20] Chen S S. Revisiting the empirical linkages between stock returns and trading volume[J]. Journal of Banking & Finance, 2012, 36(6):1781-1788.

[21] Saatcioglu K, Starks L T. The stock price-volume relationship in emerging stock markets:The case of Latin America[J]. International Journal of forecasting, 1998, 14(2):215-225.

[22] Rojas E, Kristjanpoller W. Price-volume ratio analysis by causality and day-of-the-week effect for the Latin American stock markets[J]. Lecturas de Economía, 2015(83):9-31.

[23] 范从来,徐科军. 中国股票市场收益率与交易量相关性的实证分析[J]. 管理世界, 2002, (07):31-36.

[24] 张永冀,汪昌云,华晨. 历史价量信息在价格发现中更有效吗?——基于中国证券市场的数据分析[J]. 中国管理科学,2013,21(S1):346-354.

[25] Hiemstra C, Jones J D. Testing for linear and nonlinear Granger causality in the stock price-volume relation[J]. The Journal of Finance, 1994, 49(5):1639-1664.

[26] Caginalp G, DeSantis M. Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs[J]. Physica A:Statistical Mechanics and its Applications, 2017, 467:436-452.

[27] Lin H Y. Dynamic stock return-volume relation:Evidence from emerging Asian markets[J]. Bulletin of Economic Research, 2013, 65(2):178-193.

[28] Gebka B, Wohar M E. Causality between trading volume and returns:Evidence from quantile regressions[J]. International Review of Economics & Finance, 2013, 27:144-159.

[29] 钱争鸣,郭鹏辉. 上海证券交易市场量价关系的分位回归分析[J]. 数量经济技术经济研究, 2007, (10):141-150.

[30] 许启发,蔡超,蒋翠侠. 指令不均衡与股票收益关系研究——基于大规模数据分位数回归的实证[J]. 中国管理科学,2016,24(12):20-29.

[31] Matilla-García M, Marín M R, Dore M I. A permutation entropy based test for causality:The volume-stock price relation[J]. Physica A:Statistical Mechanics and its Applications, 2014, 398:280-288.

[32] Hasan R, Salim M M. Power law cross-correlations between price change and volume change of Indian stocks[J]. Physica A:Statistical Mechanics and its Applications, 2017, 473:620-631.

[33] 吴吉林. 基于机制转换Copula模型的股市量价尾部关系研究[J]. 中国管理科学, 2012,20(05):16-23.

[34] 李云红,魏宇,张帮正. 股票市场历史信息的长记忆性特征研究[J]. 中国管理科学,2015,23(09):37-45.

[35] 姚登宝,刘晓星,张旭. 市场流动性与市场预期的动态相关结构研究——基于ARMA-GJR-GARCH-Copula模型分析[J]. 中国管理科学,2016,24(02):1-10.

[36] Sims C A. Macroeconomics and reality[J]. Econometrica, 1980,48(1):1-48.

[37] Hansen B. Testing for linearity[J]. Journal of Economic Surveys, 1999, 13(5):551-576.
文章导航

/