十三五时期(2016-2020年)是全面建成小康社会的关键期,要求各地方政府摒弃"唯GDP论",以"新常态"的经济转型为基准,加大第三产业比重,从整体上提升我国产业竞争力。因此,如何有效且快速地完成我国经济结构的转型已受到人们的广泛关注。在该背景之下,本文以第三产业结构为研究主体,将投资组合理论及熵控原理引入产业结构优化问题中,建立了一种新型的多目标产业结构分析模型,选取北京市为研究对象,利用多目标Pareto遗传算法对模型进行求解,得出若干组投资比例组合。实证结果显示,相对于实际数据,模型所得结果在经济增长、能源消耗、碳排放量、就业人数及产业分布公平性方面均较优。
China's 13th Five-Year period (2016-2020) is the critical period for building a moderately prosperous society, requiring local governments to abandon the only GDP rate theory and cite the" new normal "economic transformation as the kernel in development. In addition, the proportion of the Tertiary Industry should be increased as well in order to integral elevate the industrial competitiveness of China. Therefore, how to effectively and quickly complete the transformation of the economic structure in China has been paid widespread attention by scholars. However, previous studies focusing on this problem are mostly lack of the identifications of input proportion for various industries and the entire stability of the industrial structure distribution. Based on this background, the optimization of the Third Industry structure is taken as the research subject, and the investment portfolio theory and Entropy-Controlled principle are introduced into this problem, in order to provide decision support for government departments to establish scientific industrial structure policies in accordance with the 13th Five-Year Plan. Meanwhile, a new multi-objective industrial structure optimization model solved by the Pareto based GA algorithm is developed, in which the synthesis entropy is used to comprehensively measure the quantity and quality of the industrial structure development, and the industries within the Third Industry are seen as a group of securities. In addition, five aspects, including the economic output, energy consumption, carbon emissions, employment level, and the equity of industrial distribution, are taken into account. Moreover, a case study of Beijing City is also implemented, in which the authors used the proposed model, adopting the data from 2013, to predict and adjust the tertiary industry structure in 2014. The results show that the gained several groups of industrial structural portfolios are relatively better than the actual data with respects to above five considered aspects, accordingly proving the effectiveness of the proposed model and the conclusion that through reasonable adjustment of industrial structure it is possible to improve the economic output, employment level and the equity of industrial distribution without increasing energy consumption and carbon emissions.
[1] 牛文元. 京津冀协同发展-加速雾霾治理的生态合作[C]//京津冀协同发展的展望与思考——2014年京津冀协同发展研讨会论文集, 2014.
[2] 郝亚钢. 能源消费、产业结构与经济增长——基于省级面板数据的分析[J]. 产业经济评论, 2015,(3):62-71.
[3] 孟庆春, 黄伟东, 戎晓霞. 灰霾环境下能源效率测算与节能减排潜力分析——基于多非期望产出的NH-DEA模型[J]. 中国管理科学, 2016, 24(8):53-61.
[4] Chivu L, Ciutacu C. About industrial structures decomposition and recomposition[J]. Procedia Economics & Finance, 2014, 8(14):157-166.
[5] Sochirca E, Óscar Afonso, Gil P M. Technological knowledge bias and the industrial structure under costly investment and complementarities[J]. Economic Modelling, 2013, 32(2):440-451.
[6] 刘轶芳, 刘彦兵, 黄姗姗. 产业结构与水资源消耗结构的关联关系研究[J]. 系统工程理论与实践, 2014,34(4):861-869.
[7] 雷西洋, 戴前智, 李勇军,等. 考虑系统内部平行结构的DEA资源分摊方法[J]. 中国管理科学, 2015, 23(1):50-55.
[8] Peters G P, Weber C L, Dabo G, et al. China's growing CO2 emissions——A race between increasing consumption and efficiency gains[J]. Environmental Science & Technology, 2007, 41(17):5939-5944.
[9] Mi Zhifu, Pan Suyan, Yu Hao, et al. Potential impacts of industrial structure on energy consumption and CO2 emission:A case study of Beijing[J]. Journal of Cleaner Production, 2014,103:455-462.
[10] Chen Lei, Xu Linyu, Xu Qiao, et al. Decomposition analysis of carbon emissions and water consumption of urban manufacturing industry:A case in Dalian, China[C]//Proceedings ICSI 2014@sCreating Infrastructure for a Sustainable World ASCE, 2014.
[11] 郭常莲, 王学萌. 国民经济灰色投入产出综合评估[J]. 中国管理科学, 2014,22(S1):227-232.
[12] 王露, 张素芳. 雾霾天气引发的对河北省产业结构的分析[J]. 企业导报, 2015,(03):49-50.
[13] 巫庆美. 产业结构与就业结构动态演进研究——以广东省为例[J]. 市场经济与价格, 2015,(02):51-55.
[14] 杜琼. 基于区位熵的云南沿边地区产业结构分析[J]. 文摘版:经济管理, 2015,(2):255-255.
[15] 关伟, 许淑婷. 辽宁省能源效率与产业结构的空间特征及耦合关系[J]. 地理学报, 2014,(4):520-530.
[16] 刘杰. 山东省西部产业结构趋同研究[J]. 经济地理, 2013,(33):101-106.
[17] 渠立权, 张庆利, 陈洁. 江苏省产业结构调整对经济增长贡献的空间分析[J]. 地域研究与开发, 2013, (1):24-28.
[18] 吴振信, 石佳. 基于STIRPAT和GM(1,1)模型的北京能源碳排放影响因素分析及趋势预测[J]. 中国管理科学, 2012,20(S2):803-809.
[19] Chen Hongxia, Li Guoping. Empirical study on effect of industrial structure change on regional economic growth of Beijing-Tianjin-Hebei Metropolitan Region[J]. Chinese Geographical Science, 2011, 21(6):708-714.
[20] 李俊. 第三产业结构调整与区域经济增长——基于东、中、西部面板数据的实证研究[J]. 当代经济, 2014, (22):88-90.
[21] 殷春武. 基于灰色关联度的第三产业发展趋势组合预测模型[J]. 统计与决策, 2013,(13):15-18.
[22] 张海鹏. 第三产业发展评价指标体系的构建与测度[J]. 统计与决策, 2015,(5):62-64.
[23] 汪发元, 邓娜. 城镇化与第三产业发展水平动态互动分析[J]. 统计与决策, 2015,(4):112-115.
[24] 夏树涛, 鲍际刚, 解宏等. 熵控网络-信息论经济学[M]. 北京:经济科学出版社, 2015.
[25] Panda S, Padhy N P, Patel R N. A multi-objective GA method for generating Pareto solutions for coordinated design of PSS and TCSC[J]. International Journal of Intelligent Systems Technologies & Applications, 2009,(7):430-445.
[26] 李梅娟, 陈雪波. Pareto遗传算法在货位配置中的应用研究[J]. 控制工程, 2015, 13(2):138-140.
[27] 覃俊, 康立山. 基于遗传算法求解多目标优化问题Pareto前沿[J]. 计算机工程与应用, 2003, 39(23):42-44.
[28] 赖红松, 董品杰, 祝国瑞. 求解多目标规划问题的Pareto多目标遗传算法[J]. 系统工程, 2003,(05):24-28.
[29] 王晓鹏. 多目标优化设计中的Pareto遗传算法[J]. 系统工程与电子技术, 2003, (12):1558-1561.
[30] 张静, 鲁春霞, 谢高地,等. 北京城市能源消费的生态与环境压力研究[J]. 资源科学, 2015,37(6):1133-1140.