传统三阶段DEA方法的模型选取仅限于径向或非径向测度方法,且通常从技术、规模和纯技术效率的视角出发,不考虑非期望产出。本文使用环境DEA技术将非期望产出考虑在内,并基于环境、经济和技术效率视角构建了改进的EBM-DEA三阶段模型,有效克服了仅用径向或非径向方法的不足。最后,使用该模型测算了我国2012年省际物流业的环境、经济与技术效率,结果表明:物流业环境效率整体偏低,经济效率呈现由东部沿海向西部内陆递减的趋势,加强环境管制可以提高经济效率,修正外部环境因素及随机误差后,东、中、西部的技术效率差异仍然很大。
DEA model in traditional three-stage methods is limited to radial or non-radial measurement methods. This model is only based on technique, scale, and pure technical efficiency, and without considering undesirable output. In this study, a modified EBM-DEA three-stage model is proposed based on the considerations of environmental, economic and technical efficiency, and the environment DEA technology is also used to take undesirable outputs into account in this model. It turns out that the new proposed model can effectively overcome the shortcomings of the traditional method which only considers radial or non-radial. The performance of Chinese provincial logistics industry is evaluated using the proposed model. The results indicate that the environmental efficiency of the logistics industry is low in general and the economic efficiency presents decreasing trend from the east coast to the west inland. The economic efficiency can be improved by strengthening the environmental regulation. The technical efficiencies of the eastern, central and western regions still vary noticeably even external environmental factors and random errors are amended.
[1] Farrell M J. The measurement of productive efficiency[J]. Journal of the Royal Statistical Society, 1957, 120(3):253-281.
[2] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6):429-444.
[3] Sueyoshi T, Goto M. DEA environmental assessment of coal fired power plants:Methodological comparison between radial and non-radial models[J]. Energy Economics, 2012b, 34(6):1854-1863.
[4] Tone K, Tsutsui M. An epsilon-based measure of efficiency in DEA-A third pole of technical efficiency[J]. European Journal of Operational Research, 2010, 207(3):1154-1563.
[5] Aigner D, Lovell C A K, Schmidt P. Formulation and estimation of stochastic frontier production function modles[J]. Journal of Econometrics, 1977, 6(1):21-37.
[6] 赵金楼, 李根, 苏屹,等. 我国能源效率地区差异及收敛性分析——基于随机前沿分析和面板单位根的实证研究[J]. 中国管理科学, 2013, 21(2):175-184.
[7] Fried H O, Lovell C A K, Schmidt S S, et al. Accounting for environmental effects and statistical noise in data envelopment analysis[J]. Journal of Productivity Analysis, 2002, 17(1-2):157-174.
[8] 李洪伟, 任娜, 陶敏,等. 基于三阶段DEA的我国高新技术产业投人产出效率分析[J].中国管理科学, 2012, 20(S1):126-131.
[9] 杨青峰. 剥离环境因素的中国区域高技术产业技术效率再估计——基于三阶段DEA模型的研究[J]. 产业经济研究, 2014, (4):94-102.
[10] 张竟轶, 张竟成. 基于三阶段DEA模型的我国物流效率综合研究[J]. 管理世界, 2016, (8):178-179.
[11] Avkiran N K, Rowlands T. How to better identify the true managerial performance:State of the art using DEA[J]. Omega, 2008, 36(2):317-324.
[12] Liu Junming, Tone K. A multistage method to measure efficiency and its application to Japanese banking industry[J]. Socio-Economic Planning Sciences, 2008, 42(2):75-91.
[13] Tone K, Tsutsui M. Tuning regression results for use in multi-stage data adjustment[J]. Journal of the Operations Research Society of Japan, 2009, 52(2):76-85.
[14] 王维国,马越越.中国区域物流产业效率——基于三阶段DEA模型Malmquist-luenberger指数方法[J]. 系统工程, 2012, 30(3):67-75.
[15] Cui Qiang, Li Ye. The evaluation of transportation energy efficiency:An application of three-stage virtual frontier DEA[J].Transportation Research Part D, 2014, 29:1-11.
[16] 黄薇. 环境、风险与企业技术效率:基于改进的三阶段DEA[J]. 系统理论工程与实践, 2012, 32(1):1-10.
[17] Avkiran N, Tone K, Tsutsui M, Bridging radial and non-radial measures of efficiency in DEA[J]. Annals of Operations Research. 2008, 164(1):127-138.
[18] 汪兵, 付丹阳, 梁昌勇. 基于扩展DEA的物流业能源效率评价研究[J]. 中国管理科学,2015,23(S1):518-524.
[19] 孟庆春, 黄伟东, 戎晓霞. 灰霾环境下能源效率测算与节能减排潜力分析——基于多非期望产出的NH-DEA模型[J]. 中国管理科学, 2016, 24(8):53-60.
[20] Färe R, Grosskopf S. Modeling undesirable factors in efficiency evaluation:Comment[J]. European Journal of Operational Research, 2004, 157(1):242-245.
[21] Zhou Peng, Poh K L, Ang B W. A non-radial DEA approach to measuring environmental performance[J]. European Journal of Operational Research. 2007, 178(1):1-9.
[22] Färe R, Grosskopf S, Pasurka C A. Pollution abatement activities and traditional productivity[J]. Ecological Economics, 2007, 62(3/4):673-682.
[23] Seiford L M, Zhu J. A response to comments on modeling undesirable factors inefficiency evaluation[J]. European Journal of Operational Research, 2005, 161(2):579-581.
[24] Liang Liang, Li Yongjun, Li Shibing. Increasing the discriminatory power of DEA in the presence of the undesirable outputs and large dimensionality of data sets with PCA[J]. Expert Systems with Applications, 2009, 36(3):5895-5899.
[25] Färe R, Grosskopf S, Lovell C A K, et al. Multilateral productivity comparisons when some outputs are undesirable:A nonparametric approach[J]. The Review of Economics and Statistics, 1989, 1(1):90-98.
[26] 余泳泽, 武鹏. 我国物流产业效率及其影响因素的实证研究——基于中国省际数据的随机前沿生产函数分析[J]. 产业经济研究, 2010,(1):65-71.
[27] 邓学平. 我国物流企业全要素生产率分析[J]. 系统工程, 2008, 26(6):1-9.