主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

中国股市收益率与成交量动态关系的研究——基于工具变量的分位数回归(IVQR)模型

展开
  • 山东大学经济学院, 山东 济南 250100

收稿日期: 2016-04-29

  修回日期: 2017-03-17

  网络出版日期: 2017-10-16

基金资助

国家社会科学基金资助项目(12BTJ015);山东省自然科学基金资助项目(ZR2014AM014)

Analysis of Yield and Volume in China's Stock Market-Based on IVQR Models

Expand
  • Academy of economics, Shandong University, Jinan 250100, China

Received date: 2016-04-29

  Revised date: 2017-03-17

  Online published: 2017-10-16

摘要

基于分位数回归(QR)模型分析了不同分位水平下的收益率与成交量的关系,考虑到收益水平对成交量的影响,引入工具变量,构建IVQR模型,更加客观地分析了不同分位水平下成交量对收益率的作用。蒙特卡洛模拟结果表明IVQR估计比QR估计具有更小的偏差和更强的稳健性。实证分析结果表明条件收益率处于较高水平时与成交量正相关,且分位水平越高两者之间的相关性越大;条件收益率处于较低水平时与成交量负相关,且分位水平越低相关性越大;多数分位水平下成交量对收益率的影响并没有较大的差异。同时结果还表明工具变量的分位数回归模型能较好地处理模型中的内生性问题。

本文引用格式

任燕燕, 李劭珉 . 中国股市收益率与成交量动态关系的研究——基于工具变量的分位数回归(IVQR)模型[J]. 中国管理科学, 2017 , 25(8) : 11 -18 . DOI: 10.16381/j.cnki.issn1003-207x.2017.08.002

Abstract

Based on quantile regression models, the correlation between volumeand yield on different levels is studied.In order to eliminate the influence of yield's level to the volume, an instrumental variable and instructa IVQR model are introduced, based on which the effect of volume on yield of different levels can be analyzed objectively.Monte Carlo simulation shows that IVQR estimator has less bias and stronger robustness.In empirical analysis,it is found that yield and volume are positively correlated if the yield is on a high level, the higher the level is,the larger the correlation will be;and that yield and volume arenegativelycorrelated if the yield is on a low level, the lower the level is,the larger the correlation will be.We also find that the volume's effects on yields of most levels are similar.The outcome simultaneously shows that IVQR can dispose the endogeneity in models.

参考文献

[1] Crouch R L.The volume of transactions and price changes on the New York stock exchange[J].Financial Analysis Journal,1970,26(4):104-109.

[2] Karpoff,Jonathan M.The relation between price changes and trading volume:A survey[J].Journal of Financial and Quantitative analysis,1987,22(1):109-126.

[3] Lamoureux C G,Lastrapes W D.Heteroskedasticity in stock return date:Volume versus GARCH effects[J].Journal of Finance,1990,45(1):221-229.

[4] Chen Gongmeng.The dynamic relation between stock returns trading volume and volatility[J].The Financial Review,2001,36(3):153-174.

[5] 郭梁,周炜星. 基于高频数据的中国股市量价关系研究[J].管理学报,2010,7(8):1242-1247

[6] 吴冲锋,王承炜,吴文锋.交易量和交易量驱动的股价动力学分析方法[J].管理科学学报,2002,5(1):1-11.

[7] 吴秋芳,王长辉,唐亚勇.基于GARCH类模型和BP神经网络的量价关系实证研究[J].四川大学学报,2013,50(4):703-708

[8] 卢英,刘晓艳.经济转型时期股指收益率与成交量关系分析[J].统计与决策,2015,(8):170-172.

[9] 陈怡玲,宋逢明.中国股市价格变动与交易量关系的实证研究[J].管理科学学报,2002,3(2):62-68.

[10] 田大伟,金泰一.中国股票市场量价关系的重新审视——基于鲁棒(Robust)方法的研究[J].中国管理科学,2004,12(S1):279-283.

[11] 翟爱梅,周彤.基于市场参与者行为假设的股票市场量价关系研究[J].中国管理科学,2011,19(4):31-37.

[12] 翟爱梅,王雪峰.基于弹塑性理论构建的股票量价关系模型[J].统计与决策,2010,(3):144-146.

[13] 徐加根,孙文佳,牛锋.我国A股市场交易量信号的差异性研究[J].财经问题研究,2015,(7):52-57.

[14] 林德钦.上海股市收益率与成交量的动态关系研究——基于分位数回归模型的分析[J].金融教学与研究,2014,157(5):48-52.

[15] Chernozhukov V, Hansen C. Instrumental variable quantile regression:A robust inference approach[J]. Journal of Econometrics, 2008, 142(1):379-398.

[16] Koenker R,Bassett G W. Regression quantiles[J].Econometrica,1978,46(1):33-50.

[17] Koenker R. Quantile regression[M].Cambridge:Cambridge University Press,2005.

[18] Koenker R, Machado J A F.Goodness of fit and related inference processes for quantile regression[J].Journal of the American Statistical Association, 1999, 94(448):1296-1310.

[19] Durrett R. Probability:Theory and examples[M]. Belmont, CA:Duxbury Press,Second Edition,1996.

[20] Chernozhukov V, Hansen C.Instrumental quantile regression inference for structural and treatment effect models[J].Journal of Econometrics, 2006,132(2):491-525.
文章导航

/