主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

区间数分级决策的特征选择方法研究

展开
  • 1. 山西大学经济与管理学院, 山西 太原 030006;
    2. 山西大学计算智能与中文信息处理教育部重点实验室, 山西 太原 030006

收稿日期: 2016-01-14

  修回日期: 2016-02-12

  网络出版日期: 2017-09-25

基金资助

国家自然科学基金青年项目(71301090);国家自然科学基金重点项目(71031006,61432011);国家优秀青年科学基金项目(61322211);教育部人文社会科学研究青年基金项目(12YJC630174);山西省高等学校创新人才支持计划(2013052006)

Research on Feature Selection Method for Interval Sorting Decision

Expand
  • 1. School of Economics and Management, Shanxi University, Taiyuan 030006, China;
    2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, China

Received date: 2016-01-14

  Revised date: 2016-02-12

  Online published: 2017-09-25

摘要

在多属性决策分析中,科学的特征选择方法有利于提取关键决策指标,进而求解决策方案并提升决策效率。本文面向区间数分级决策问题,以区间数优势关系为序化信息刻画的基本手段;基于粗糙集与信息熵理论,通过分析条件属性与决策属性序相关性的决策内涵,提出了一种新的特征评价函数——区间序补集条件熵。在此基础上,基于区间序补集条件熵的变化程度,给出了必要属性的形式化表示与属性重要度的度量准则,进而设计了区间数分级决策表的启发式特征选择算法。最后,通过两个案例研究,验证了特征选择方法的有效性。

本文引用格式

宋鹏, 梁吉业, 钱宇华, 李常洪 . 区间数分级决策的特征选择方法研究[J]. 中国管理科学, 2017 , 25(7) : 141 -152 . DOI: 10.16381/j.cnki.issn1003-207x.2017.07.016

Abstract

In the field of multiple attributes decision making, sorting decision has become an important kind of issue and been widely concerned in many practical application areas. In the process of making sorting decision,the rational and effective feature selection methods can extract informative and pertinent attributes, and thus improve the efficiency of decision making. From the extant literatures, many valuable researches have been provided for more reasonably solving this problem in the context of diverse data types, such as single value, null value and set value. However, very few studies focus on the sorting decision in term of interval-valued data. The objective of this paper is to provide a new feature selection approach for interval sorting decision by using the interval outranking relation. By integrating rough set model and information entropy theory, a new measurement called complementary condition entropy, which investigates the complementary nature of the relevant sets, is proposed for feature evaluation through analyzing the inherent implication of correlation between considered attributes in the problem of interval sorting decision. Furthermore,on the basis of the difference of the values of complementary condition entropy,the representation of the indispensable attributes and the measurement of attributes importance are presented, and then develop a heuristic feature selection algorithm is proposed for interval sorting decision. Finally, two illustrative applications, namely,the issues of venture investment and portfolio selection, are employed to demonstrate the validity of the proposed method.For the problem of multi-stage venture investment decision, through investigating the competitiveness, development capacity and financial capability of 16 investment projects, the corresponding probabilistic decision rules having better generalization capability, which can be used to determine whether to perform further investment. As to the issue of portfolio selection, 91 stocks coming from Chinese stock market and 9 operating performance indicators of these firms are employed. By using the presented approach in this study, a portfolio which has better investment return can be construeted. Accordingly, the corresponding strategy for building portfolio is useful to quantitative investment decision. In brief, as the important preprocessing tool in the process of decision analysis, the feature selection method built in this paper is of extensive meaning for discovering the key indicators and improving decision performance in the field of sorting decisio

参考文献

[1] Dyer J S, Fishburn P C, Steuer R E, et al. Multiple criteria decision making, multiattribute utility theory: The next ten years[J]. Management Science, 1992, 38(5): 645-654.

[2] Wallenius J, Dyer J S, Fishburn P C, et al. Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead[J]. Management Science, 2008, 54(7): 1336-1349.

[3] 梁昌勇, 顾东晓, 程文娟, 等. 含非连续性信息多属性案例中的决策知识发现方法[J]. 中国管理科学, 2014, 22(4): 83-91.

[4] 刘健, 刘思峰, 马义中, 等.基于心理阈值的多属性决策问题目标调整研究[J]. 中国管理科学, 2015, 23(2): 123-130.

[5] 丁涛, 梁樑. 基于方案占优和排序稳健性的多属性决策方法[J]. 中国管理科学, 2016, 24(8): 132-138.

[6] 韩菁, 叶顺心, 柴建,等. 基于后悔理论的混合型多属性案例决策方法[J]. 中国管理科学, 2016, 24(12): 108-116.

[7] Roy B.Multicriteria methodology for decision aiding[M]//Pardalos P.nonconvex optimization and its applications.US:Springer Verlag, 1996.

[8] Zopounidis C, Doumpos M.Multicriteria classification and sorting methods: A literature review[J]. European Journal of Operational Research, 2002, 138 (2): 229-246.

[9] Neves L P, Martins A G, Antunes C H, et al. A multi-criteria decision approach to sorting actions for promoting energy efficiency[J]. Energy Policy, 2008, 36(7): 2351-2363.

[10] Kadziński M, Tervonen T, Figueira J R.Robust multi-criteria sorting with the outranking preference model and characteristic profiles[J]. Omega, 2015, 55: 126-140.

[11] Kadziński M, Ciomek K, S?owiński R.Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting[J].European Journal of Operational Research, 2015, 241(3): 830-841.

[12] 张小芝, 朱传喜, 朱丽. 时序多属性决策的广义等级偏好优序法[J]. 中国管理科学, 2014, 22(4): 105-111.

[13] Silva M M, Costa APCS,de Gusmao APH.Continuous cooperation: Aproposal using a fuzzy multicriteria sorting method[J]. International Journal of Production Economics, 2014, 151: 67-75.

[14] Dash M, Liu Huan.Consistency-based search in feature selection[J]. Artificial Intelligence, 2003, 151(1-2): 155-176.

[15] 赵宇, 黄思明, 陈锐. 数据分类中的特征选择算法研究[J]. 中国管理科学, 2013, 21(6): 38-46.

[16] Lee J, Kim D W.Fast multi-label feature selection based on information-theoretic feature ranking[J]. Pattern Recognition, 2015, 48(9): 2761-2771.

[17] Maldonado S, Montoya R, Weber R.Advanced conjoint analysis using feature selection via support vector machines[J]. European Journal of Operational Research, 2015, 241(2): 564-574.

[18] 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166.

[19] Peng Hanchuan, Long Fuhui, Ding C. Feature selection based on mutual information: Criteria of max-dependency,max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8):1226-1238.

[20] Wang Feng, Liang Jiye. An efficient feature selection algorithm for hybrid data[J]. Neurocomputing, 2016, 193(c): 33-41.

[21] Jensen R, Shen Qiang.Semantics-preserving dimensionality reduction:Rough and fuzzy-rough-based approaches[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1457-1471.

[22] Parthaláin N M, Shen Qiang.Exploring the boundary region of tolerance rough sets for feature selection[J]. Pattern Recognition, 2009, 42(5): 655-667.

[23] Qian Yuhua, Liang Jiye, Pedrycz W, et al. Positive approximation:An accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence,2010, 174(9-10): 597-618.

[24] Liang Jiye, Wang Feng, Qian Yuhua,et al.A group incremental approach to feature selection applying rough set technique[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 294-308.

[25] Tseng T L, Huang C C.Rough set-based approach to feature selection in customer relationship management[J]. Omega, 2007, 35 (4): 365-383.

[26] 徐泽水, 达庆利. 一种基于可能度的区间判断矩阵排序法[J]. 中国管理科学, 2003, 11(1): 63-65.

[27] Xu Zeshui, Liao Huchang.Intuitionistic fuzzy analytic hierarchy process[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4): 749-761.

[28] 樊治平, 陈发动, 张晓. 考虑决策者心理行为的区间数多属性决策方法[J]. 东北大学学报(自然科学版), 2011, 32(1): 136-139.

[29] Fan Zhiping, Liu Yang.An approach to solve group-decision-making problems with ordinal interval numbers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(5):1413-1423.

[30] Liang Jiye, Xu Zongben.The algorithm on knowledge reduction in incomplete information systems[J].International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(1): 95-103.

[31] Song Peng, Liang Jiye, Qian Yuhua. A two-grade approach to ranking interval data[J]. Knowledge-Based Systems, 2012, 27: 234-244.

[32] Hu Qinghua, Yu Daren, Xie Zongxia. Information-preserving hybrid data reduction based on fuzzy-rough techniques[J]. Pattern Recognition Letters, 2006, 27 (5):414-423.

[33] Qian Yuha, Wang Qi, Cheng Honghong, et al.Fuzzy-rough feature selection accelerator[J]. Fuzzy Sets and Systems, 2015, 258: 61-78.

[34] 刘小弟, 朱建军, 刘思峰. 方案有不确定偏好的区间数相对熵群决策方法[J]. 中国管理科学, 2014, 22(6): 134-140.

[35] 梁燕华, 郭鹏, 朱煜明. 基于样本集的区间数灰靶分类决策模型及应用[J]. 中国管理科学, 2014, 22(5): 98-103.

[36] 郭崇慧, 刘永超. 区间型符号数据的特征选择方法[J]. 运筹与管理, 2015, 24(1): 67-74.

[37] Liang Jiye, Chin K S, Dang C Y, et al. A new method for measuring uncertainty and fuzziness in rough settheory[J]. International Journal of General Systems, 2002, 31(4):331-342.

[38] Piramuthu S.Evaluating feature selection methods for learning in data mining applications[J]. European Journal of Operational Research, 2004, 156(2): 483-494.

[39] Roy B.Méthodologie Multicritèred'Aide à la Décision[M]. Paris:Economica, 1985.

[40] Diday E. From data to knowledge: Probabilistic objects for a symbolic data analysis[M]//Dodge Y,Whittaker J.Statistics,Heidelberg:Physica,1992.

[41] Qian Yuhua,Liang Jiye, Song Peng, et al.Evaluation of the decision performance of the decision rule set from an ordered decision table[J].Knowledge-Based Systems, 2012, 36: 39-50.

[42] Sevastjanov P, Dymova L. Stock screening with use of multiple criteria decision making and optimization[J]. Omega, 2009, 37(3): 659-671.
文章导航

/