主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

供热计量条件下用户用热博弈模型研究

展开
  • 1. 中国科协创新战略研究院, 北京 100863;
    2. 中国科学院科技战略咨询研究院, 北京 100190;
    3. 中国科学院大学, 北京 100049

收稿日期: 2015-01-03

  修回日期: 2015-12-30

  网络出版日期: 2017-08-26

基金资助

国家公益性行业科研专项(201310118);中国科学院科技政策与管理科学研究所重大研究专项B类(Y201161Z04)

Research on the Game process Between Heat Consumers in Civil Building with Heat Metering

Expand
  • 1. National Academy of Innovation Strategy, Chinese Association for Science and Technology, Beijing 100863, China;
    2. Institute of Science and Development, Chinese Academy of Sciences, Beijing 100190, China;
    3. University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-01-03

  Revised date: 2015-12-30

  Online published: 2017-08-26

摘要

考虑热费分户计量过程中存在户间传热的问题,将户间传递的热能看作是私人供给的公共物品,从公共品私人共享博弈的角度研究民用建筑内住户间用热博弈模型,基于居民用热的科布-道格拉斯效用函数得到不同位置住户在采暖热费用方面的补偿机制,平衡了住户间收退费差异。通过北京某一热计量建筑的实证研究表明,本文提出的热费补偿计算有效地解决了边角住户温度低、用热大,中间住户温度高,用热少的现实问题,有利于热计量工作的大面积推广。

本文引用格式

赵宇, 陈锐, 廖原 . 供热计量条件下用户用热博弈模型研究[J]. 中国管理科学, 2017 , 25(6) : 169 -178 . DOI: 10.16381/j.cnki.issn1003-207x.2017.06.018

Abstract

China has a large variety of existing and new apartment buildings which means its energy consumption grows faster with the increase of urbanization. Building energy consumption takes a large share of the total energy consumption. Reducing this part plays a key role in energy conservation and emissions reduction, which can be realized mainly by heat metering in consumers. Different with the other heat metering and allocation method which usually allocating the heat charge by building or neighborhoods, an allocation model between one user and its neighbors is constructed, linked with the heat transfer which can be considered as a game model. Usually most of these problems involved games among the government, the heat company and the residents. In this paper, the heat transferred between apartment is considered as a public goods. Followed the famous game problem of private goods sharing voluntarily, one resident which position is at corner and its neighbors in the center position are the two agents in this game. The Nash equilibrium is calculated, where the corner resident need more public heat than the center residents. When assuming the Cobb-Douglas utility function, A brand new heat allocation model is proposed which against the backdrop of low quality of heating building, deficiency of heat charging mechanism. Sharing the charge among the heat user and its neighbors, this model can more accurately measure the heat used during the heating season. Heat transfer between apartments, different heat use habits etc. can be solved and balanced the different locations of the user's heat charge variation, which promote the large area heat metering work. The key is public heat and private heat prices of radiator heating and neighbor heat transfer are defied and used to construct the heat usage game model. The empirical research indicates that this model can availably handle many problems in the period of heat metering promotion, such as corner room, heat transfer between neighbors, different climate conditions etc., which gives citizen a new method and measure for utilizing and metering heat, promoting the energy conservation and emission reduction.

参考文献

[1] 黄维."后计量"时代需要考虑的若干技术问题[J]. 暖通空调, 2011, 41(1): 71-73.

[2] 徐伟, 宋波, 柳松,等. 我国供热计量技术支撑体系[J]. 建设科技, 2012,(18): 20-25.

[3] 江亿. 北方采暖地区既有建筑节能改造问题研究[J]. 中国能源, 2011, 33(9): 6-13.

[4] Fehr E, Schmidt K M. A theory of fairness, competition and cooperation[J]. Quarterly Journal of Economics, 1999, 114(3):817-868.

[5] Rabin M. Incorporating fairness into game theory and economics[J]. American Economics Review, 1993, 83(5): 1291-1302.

[6] Arrow K J,Colombatto E,Perlman M.The rational foundations of economic behavior[C] //Proceedings of the IEA Conference,Turin,Italy,1996.

[7] Rabin M. A perspective on psychology and economics[J]. European Economic Review. 2002, 46(4-5): 657-685.

[8] De Marco, G Morgan J. Slightly altruistic equilibria[J]. Journal of Optimization Theory and Applications, 2008, 137(2):347-363.

[9] 蒲勇健, 杨哲. 轻微利他弱Pareto-Nash均衡[J]. 系统科学与数学, 2010, 30(9): 1259-1266.

[10] Samuelson P. The pure theory of public expenditure[J]. The Review of Economics and Statistics, 1954, 36(4): 387-389.

[11] Bergstrom T. On the private provision of Public Goods[J]. Journal of Public Economics, 1986, 29:25-49.

[12] [美] 丹尼斯大林C 穆勒. 公共选择理论[M]. 杨春学,译.北京: 中国社会科学出版社, 2010.

[13] 石军伟,胡立君.企业社会资本的自愿供给:一个静态博弈模型[J].数量经济技术经济研究,2005,22(8):16-24.

[14] 侯光明,李存金.管理非合作博弈机制式表述[J].中国管理科学,2002,10(3):86-90.

[15] 陈潭.集体行动的困境:理论阐释与实证分析—非合作博弈下的公共管理危机及其克服[J].中国软科学,2003,(9):139-144.

[16] 淮建军,刘新梅,雷红梅,等.地方政府和房地产商非合作讨价还价的博弈分析[J].运筹与管理,2008,17(3):70-74.

[17] 吴云,周青.团队冲突的非合作博弈分析[J].科技管理研究,2012,32(23):143-146.

[18] 张斌,华中生.供应链质量管理中抽样检验决策的非合作博弈分析[J].中国管理科学,2006,14(3):27-31

[19] 刘军,李成金.产量-价格策略下的双寡头动态多维博弈[J].中国管理科学,2008,16(6):150-155.

[20] 刘洋,梁经锐.公共物品私人供给的纳什均衡分析[J].运筹与管理,2001,10(3):83-88.

[21] 张荣,张宗益.电力竞价博弈中的信息结构[J].系统工程理论与实践,2013,33(1):92-98.

[22] 卞亦文.非合作博弈两阶段生产系统的环境效率评价[J].管理科学学报,2012,15(7):11-19.

[23] 张国兴,张绪涛,程素杰,等.节能减排补贴政策下的企业与政府信号博弈模型[J].中国管理科学,2013,21(4):129-136.

[24] 李洪砚, 朱绪格, 张大鹏,等. 民用建筑"热改困局":一个三方博弈的视角[J]. 价值工程, 2013, (35):113-115.

[25] 金占勇, 武涌, 刘长滨,等. 基于外部性分析的北方供暖地区既有居住建筑节能改造经济激励政策设计[J]. 暖通空调, 2007, 37(9): 14-19.

[26] 柴沁虎, 丁艳军, 袁伟亮,等. 不同供热收费模式的经济学分析[J].暖通空调, 2006, 36(10): 39-41.
文章导航

/