本文基于应急资源配置的灾前预防准备和灾后的响应分配,在多类应急资源配置选址-路径优化名义模型的基础上,考虑多类应急资源成本的不确定性,引入两类不确定集合(box和ellipsoid)刻画该不确定性,分别建立多类应急资源鲁棒选址-路径优化模型,运用鲁棒优化方法,将其转化为易求解处理的鲁棒等价模型,并通过CPLEX和GAMS混合编程算法求解。最后,本文对我国四川北部和西部自然灾害多发区的19个县市进行应急资源优化配置分析,确定应急资源临时供应点的最优选址布局、应急资源的分配路径,同时考虑扰动比例的灵敏度分析,验证模型的可行性和有效性。结果表明在其他条件相同的情况下,ellipsoid不确定集合下的鲁棒模型较保守,配置的总成本较高,因此决策者可以根据自己的风险厌恶程度选择不确定水平参数的值,确定应急资源的配置方案,进而为相关应急救灾部门在灾前预防准备工作提供决策支持。
Decisions to support preparedness activities for disastermanagement are challenging due to the uncertainties of parameters, the balance preparedness and risk, so it is a hot topic. In this paper multiple relief resources location-routing problem is addressed to determine optimal deployment of supply facilities for multiple relief resources, transport distribution route. However, traditional methods addressing this problem mainly focus on stochastic optimization by assuming probability distribution to measure the uncertainty, there are some drawbacks. Multiple relief resources cost uncertainty is considered, introducing two types of uncertainty sets, i.e. box and ellipsoid, to capture the uncertain cost of multiple relief resources, and multiple relief resources robust location-routing models are proposed respectively, which are converted into the deterministic robust equivalent models, and can be solved by hybrid programming algorithm coded in GAMS and CPLEX. Finally, the 19 cities in the north and west of Sichuan Province are chosen to conduct the numerical study. Results show that the proposed robust models is feasible and effective, and compared to the robust model based on box uncertainty set, under the same parameter setting, robust model based on ellipsoid uncertainty set usually is more conservative, and leads to a higher total cost. Decision-makers, according to their risk aversion and conservativeness, choose an appropriate value for the uncertain level parameters Γ/Ω to get the optimal solution, and provide decision support to the department of Emergency Disaster Relief.
[1] 中华人民共和国国务院新闻办公室.《中国的减灾行动》白皮书[EB/OL].[2009-05-11].news.xinhua net.com/newscen-ter/2009-05111/cont-ent_12351082.htm.
[2] Altay N, Green W G. OR/MS research in disaster operations management[J]. European Journal of Operational Research, 2006, 175(1): 475-493.
[3] Galindo G, Batta R. Review of recent developments in OR/MS research in disaster operations management[J]. European Journal of Operational Research, 2013, 230(2): 201-211.
[4] Mete H O, Zabinsky Z B. Stochastic optimization of medical supply location and distribution in disaster management[J]. International Journal of Production Economics, 2010, 126(1): 76-84.
[5] 葛洪磊, 刘南. 复杂灾害情景下应急资源配置的随机规划模型[J]. 系统工程理论与实践, 2014, 34(12): 3034-3042.
[6] Doyen A, Aras N, Barbaroso?u G. A two-echelon stochastic facility location model for humanitarian relief logistics[J]. Optimization Letters, 2012, 6(6): 1123-1145.
[7] Jia Hongzhong, Ordóñez F, Dessouky M. A modeling framework for facility location of medical services for large-scale emergencies[J]. ⅡE Transactions, 2007, 39(1): 41-55.
[8] Verma A, Gaukler G M. Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches[J]. Computers & Operations Research, 2015, 62: 197-209.
[9] Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization[M]. Princeton:Princeton University Press, 2009.
[10] Bertsimas D, Sim M. The price of robustness[J]. Operations Research, 2004, 52(1): 35-53.
[11] Ben-Tal A, Do Chung B, Mandala S R, et al. Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains[J]. Transportation Research Part B: Methodological, 2011, 45(8): 1177-1189.
[12] Baron O, Milner J, Naseraldin H. Facility location: A robust optimization approach[J]. Production and Operations Management, 2011, 20(5): 772-785.
[13] 张玲, 王晶, 张敏. 基于不确定需求的灾后应急救灾网络规划模型与算法[J]. 运筹与管理, 2014, 23(3): 49-55.
[14] 陈涛, 黄钧, 朱建明. 基于信息更新的两阶段鲁棒-随机优化调配模型研究[J]. 中国管理科学, 2015, 23(10): 66-77.
[15] 俞武扬. 不确定网络结构下的应急物资鲁棒配置模型[J]. 控制与决策, 2013, 28(12): 1898-1902.
[16] 杨涛, 邓荣贵. 四川地区地震崩塌滑坡的基本特征及危险性分区[J]. 山地学报, 2002, 20(4): 456-460.