主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

集装箱码头的集卡两阶段路径优化研究

展开
  • 1. 哈尔滨工程大学经济管理学院, 黑龙江 哈尔滨 150001;
    2. 工业和信息化部电子第五研究所, 广东 广州 510610

收稿日期: 2015-06-03

  修回日期: 2016-05-26

  网络出版日期: 2017-06-29

基金资助

工信部高技术船舶科研项目;中央高校基本科研业务费专项资金重点项目(HEUCFD1505);国家自然科学基金面上项目(71271062)

Two-stage Optimization for Yard Trailers Routing In Container Terminals

Expand
  • 1. School of Management and Economics, Harbin Engineering University, Harbin 150001, China;
    2. CEPREI, Guangzhou 510610, China

Received date: 2015-06-03

  Revised date: 2016-05-26

  Online published: 2017-06-29

摘要

针对目前研究集卡路径问题的文章多数未考虑到空载对集卡运输效率的影响,且多在忽略集卡数量的情况下对路径进行优化,本文考虑集卡数量和空载距离构建了集装箱码头的集卡两阶段路径优化模型。其中,以集卡行使距离最小为目标构建了第一阶段集卡路径优化模型,解决了不考虑集卡数量时的初步路径规划及每条路径的运输量问题。基于第一阶段结果,引入集卡数量,以集卡任务间空载距离最小为目标构建了第二阶段集卡路径优化模型,通过粒子群算法解决了每辆集卡的路径任务分配及作业顺序的问题。算例结果表明,进行第二阶段优化后的集卡空载距离和空载率得到降低。

本文引用格式

赵金楼, 黄金虎, 刘馨 . 集装箱码头的集卡两阶段路径优化研究[J]. 中国管理科学, 2017 , 25(4) : 152 -157 . DOI: 10.16381/j.cnki.issn1003-207x.2017.04.018

Abstract

With the continuous development of container transportation business, the efficiency and management level of container terminal is more and more important. At the same time, the problem of yard trailers routing receives more attention because yard trailers work as the main machine to carry containers in the horizontal direction at terminals. However, most current research on yard trailers routing problem did not consider the influence of no-load distance on trailers' transport efficiency, and a large part of current research just made routing optimization for singer yard trailers ignoring the condition of different trailers. Under the above background, a two-stage routing optimization model which consisting of two relevant models for yard trailers is proposed to solve the routing problem based on pool strategy. This strategy means loading and unloading operations are performed during one work route instead of doing loading and unloading operations separately. On the first stage, a routing optimization model is given to minimize the route distance without considering the number of yard trailers. This model is used to determine which import and export blocks to go through. On the second stage, for the purpose of minimizing no-load distance, the other routing optimization model which considers the number of trailers is constructed based on the result of the first model. According to the characteristics of two models, the software of Lingo is used to solve the first model, and particle swarm optimization method is utilized to solve the second model which involves route assignment and job order for every trailer. The results show that the no-load distance and no-load rate are decreased after the optimization on the second stage. In addition, with the second stage model, it is found that increasing the number of trailers is helpful to reduce the no-load rate. By proposing the two-stage routing optimization model, both the no-load distance and the number of yard trailers are taken into account and improves the existing research.

参考文献

[1] 计明军,刘丰硕,李郭记,等. 基于装卸协同作业的集装箱码头集卡调度及配置优化[J]. 大连海事大学学报,2010,36(1):47-50.

[2] Grunow M, Günther H O, Lehmann M. Dispatching multi-load AGVs in highly automated seaport container terminals[M]. Berlin Heidelberg:Springer, 2005.

[3] Bish E K. A multiple-crane-constrained scheduling problem in a container terminal[J]. European Journal of Operational Research, 2003, 144(1):83-107.

[4] Nishimura E.Yard trailer routing at a maritime container terminal[J].Transportation Research Part E,2005,41(1):53-76.

[5] Amini A, Tavakkoli-Moghaddam R. A bi-objective truck scheduling problem in a cross-docking center with probability of breakdown for trucks[J]. Computers & Industrial Engineering, 2016, 96:180-191.

[6] Cordeau J F, Legato P, Mazza R M, et al. Simulation-based optimization for housekeeping in a container transshipment terminal[J]. Computers & Operations Research, 2015, 53:81-95.

[7] Kozan E. Optimising container transfers at multimodal terminals[J]. Mathematical and Computer Modelling, 2000, 31(10):235-243.

[8] Berghman L, Leus R. A Lagrangian heuristic for a dock assignment problem with trailer transportation[C]//Proceedings of 2010 IEEE International Conference on, Industrial Engineering and Engineering Management, (IEEM), 2010.

[9] 杨静蕾. 集装箱码头物流路径优化研究[J]. 水运工程,2006,(1):32-35.

[10] 吕品,乐美龙. 基于作业面的集装箱港口集卡路径及成本优化[J]. 青岛科技大学学报(自然科学版),2015,36(3):327-332.

[11] 魏宏磊,朱瑾. 基于"作业面"优先策略的集装箱港口集卡路径优化研究[J]. 中国水运(下半月), 2012,12(1):70-72.

[12] 计明军, 靳志宏. 集装箱码头集卡与岸桥协调调度优化[J]. 复旦学报:自然科学版, 2008,46(4):60-64+72.

[13] 曹庆奎, 赵斐. 基于遗传蚁群算法的港口集卡路径优化[J]. 系统工程理论与实践, 2013, 33(7):1820-1828.

[14] 曾庆成, 杨忠振. 集装箱码头集卡调度模型与Q学习算法[J]. 哈尔滨工程大学学报, 2008, 29(1):1-4.

[15] 曾庆成, 陈文浩, 胡祥培. 集装箱码头外部集卡预约优化模型与算法[J]. 中国管理科学, 2015, 23(10):125-130.

[16] 邢曦文, 毛钧, 张睿, 等. 基于混合流水作业组织的集装箱码头装卸作业集成调度优化[J]. 中国管理科学, 2014, 22(10):97-105.

[17] 杨忠振, 程健南. 基于出口箱随机到达码头的车船直取装船作业优化[J]. 大连海事大学学报, 2016, 42(4):97-104.

[18] Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26(8):363-371.

[19] 纪震, 廖惠连, 吴青华. 粒子群算法及其应用[M]. 北京:科学出版社, 2009.

[8] Berghman L, Leus R. A Lagrangian heuristic for a dock assignment problem with trailer transportation[C]//Proceedings of 2010 IEEE International Conference on, Industrial Engineering and Engineering Management, (IEEM), 2010.

[9] 杨静蕾. 集装箱码头物流路径优化研究[J]. 水运工程,2006,(1):32-35.

[10] 吕品,乐美龙. 基于作业面的集装箱港口集卡路径及成本优化[J]. 青岛科技大学学报(自然科学版),2015,36(3):327-332.

[11] 魏宏磊,朱瑾. 基于"作业面"优先策略的集装箱港口集卡路径优化研究[J]. 中国水运(下半月), 2012,12(1):70-72.

[12] 计明军, 靳志宏. 集装箱码头集卡与岸桥协调调度优化[J]. 复旦学报:自然科学版, 2008,46(4):60-64+72.

[13] 曹庆奎, 赵斐. 基于遗传蚁群算法的港口集卡路径优化[J]. 系统工程理论与实践, 2013, 33(7):1820-1828.

[14] 曾庆成, 杨忠振. 集装箱码头集卡调度模型与Q学习算法[J]. 哈尔滨工程大学学报, 2008, 29(1):1-4.

[15] 曾庆成, 陈文浩, 胡祥培. 集装箱码头外部集卡预约优化模型与算法[J]. 中国管理科学, 2015, 23(10):125-130.

[16] 邢曦文, 毛钧, 张睿, 等. 基于混合流水作业组织的集装箱码头装卸作业集成调度优化[J]. 中国管理科学, 2014, 22(10):97-105.

[17] 杨忠振, 程健南. 基于出口箱随机到达码头的车船直取装船作业优化[J]. 大连海事大学学报, 2016, 42(4):97-104.

[18] Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26(8):363-371.

[19] 纪震, 廖惠连, 吴青华. 粒子群算法及其应用[M]. 北京:科学出版社, 2009.
文章导航

/