主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

震后应急供应问题与交通路网的协同优化模型

展开
  • 1. 上海海事大学经济管理学院, 上海 201306;
    2. 同济大学经济与管理学院, 上海 200092;
    3. 上海理工大学管理学院, 上海 200093;
    4. 上海财经大学国际工商管理学院, 上海 200043

收稿日期: 2016-06-30

  修回日期: 2017-01-08

  网络出版日期: 2017-06-29

基金资助

国家自然科学基金资助项目(71473162,71371145,71102043,61273042);上海市教育委员会创新项目(14ZS123)

Emergency Supply Problems and Collaboration Optimization of Emergency Traffic Network after Earthquakes

Expand
  • 1. School of Economics Management, Shanghai Maritime University, Shanghai 201306, China;
    2. School of Economics and Management, Tongji University, Shanghai 200092, China;
    3. University of Shanghai for Science and Technology, Shanghai 200093, China;
    4. School of International Business Adminstration, Shanghai University of Finance and Economics, Shanghai 200433

Received date: 2016-06-30

  Revised date: 2017-01-08

  Online published: 2017-06-29

摘要

地震的发生对交通路网的影响主要有两个方面,一是原有的交通路网遭到破坏,使交通路网的通行能力大大降低;二是地震突发事件发生后,受灾地区有大量的伤员需要运出接受救治,加上受灾地区由于救援工作需要大量资源,使路网的流量迅速提升。震后路网是这两种情况的叠加,极易发生严重堵塞现象。为避免和减少这种情况的发生,首先分析面向智慧城市和大数据环境下的协同供应效率系数的影响,构建考虑应急服务资源覆盖面最大和灾害损失最小的应急供应协同模型。其次,在分析应急车辆平均行程速度、路段饱和度、占有率和排队长度比等约束条件的基础上,构建震后应急交通路网协同优化模型。最后案例验证了所提出的协同优化模型的有效性。研究成果将对应急交通控制和管理实践提供理论依据和解决方案。

本文引用格式

何新华, 胡文发, 周溪召, 郑爱兵 . 震后应急供应问题与交通路网的协同优化模型[J]. 中国管理科学, 2017 , 25(4) : 104 -114 . DOI: 10.16381/j.cnki.issn1003-207x.2017.04.013

Abstract

An earthquake often has impact on a traffic network from two aspects. The first one is a wide damage of theexisting transportation network which would decrease traffic capacity dramatically and cause frequent traffic congestions, and the second one is a soaring demand of transportation to deliver a great deal of injured people to other undamaged areas in a short time and to import many emergent resources to the damaged areas. Accumulation of above impact would worsen transportation reliability and reduce transportation capability of the traffic network. In order to avoid those adversities, based on recognizing traffic network properties under emergency conditions after an earthquake, a framework of emergency service resource supply and supply problems of emergency service resources after earthquakes are considered in this paper. An Emergent Transportation Collaboration Network (ETCN) is presented, which consists of a collection center of emergent service resources, a transit center of emergent service resources and distribution center of emergent service resources. All emergent activities in ETCN are classified into three working stages, and a Collaboration Supply Efficiency (CSE) coefficient to describe their relationships is introduced. Based on ECTN and CSE coefficients, an Emergent Supply Collaboration Model (ESCM) is developed, whose objectives are to maximize coverage area of emergent service resources and to minimize disaster loss. In order to ensure supplying emergent service resources and avoiding traffic congestions, a collaboration optimization model of emergent traffic network after earthquake is further developed from ESCM considering constraints of average transportation speed of emergency vehicles, road saturation, occupation ratio and queue length. Then, it is discussed that the changing principle of occupation ratio and queue length by variation of transportation speed of vehicles under emergencies. In the end, a case study is applied to testify a collaboration optimizationto ensure supplying emergent service resources. A numerical example demonstrates the proposed model is effective and the improved algorithmis efficient.This paper would be a theoretical base and potential practice solution for emergency traffic control and management.

参考文献

[1] Sheu J B. An emergency logistics distribution approach for quick response to urgent relief demand in disasters[J]. Transportation Research Part E:Logistics and Transportation Review, 2007, 43(6):687-709.

[2] Liu Wenmao, Hu Guangyu, Li Jianfeng.Emergency resources demand prediction using case-based reasoning[J].Safety cience,2012,50(3):530-534.

[3] Wong S C,Yang Hai. Reserve capacity of a signal control road network[J].Transportation Research,1997,31(5):397-402.

[4] Chiou S W. Optimization of a nonlinear area traffic control system with elastic demand[J]. Automatica, 2010,46(10):1626-1635.

[5] Kong Xiangjie, Xua Zhenzhen, Shenb Guojiang, et al. Urban traffic congestion estimation and prediction based on floating car trajectory data[J]. Future Generation Computer Systems, 2016, 61:97-107.

[6] Yang Zhaosheng,Mei Duo,Yang Qingfang,et al. Research on traffic flow prediction model for large-scale road network based on cloud computing[J].Mathematical Problems in Engineering, 2014,2014(3):1-8.

[7] 陈绍宽,郭谨一,王璇,等.交叉口延误计算方法的比较[J].北京交通大学学报,2005,29(3):77-80.

[8] 庄焰,曾文佳.信号交叉口延误计算模型研究[J].深圳大学学报(理工版),2006,23(4):309-313.

[9] 王嘉祺,程建川,王昊.信号交叉口增量延误分析[J].交通与计算机,2005,23(5):13-16.

[10] 孙智源, 陆化普,张晓利,等. 城市交通控制与诱导协同的双层规划模型[J]. 东南大学学报(自然科学版), 2016, 46(2):450-457.

[11] 罗向龙,焦琴琴,牛力瑶,等. 基于深度学习的短时交通流预测[J]. 计算机应用研究, 2016, 34(1):1-5.

[12] 刘长石, 彭怡, 寇纲. 震后应急物资配送的模糊定位-路径问题研究[J]. 中国管理科学,2016, 24(5):111-118.

[13] Allwinkle S; Cruickshank P. Creating smarter cities:An overview[J].Journal of Urban Technology,2011,18(2):1-16.

[14] 何新华,胡文发,许长延,等.考虑随机性与模糊性的应急服务供应链转运策略[J].山东大学学报(理学版), 2016, 51(12):67-77.

[15] He Xinhua, Hu Wenfa. Modeling relief demands in an emergency supply chain system under large-scale disasters based on a queuing network[J]. ScientificWorld Journal, 2014,(2):1-12.
文章导航

/