主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

分销供应链中零售商横向竞争下采购联盟的稳定结构

展开
  • 1. 广州大学工商管理学院, 广东 广州 510006;
    2. 华南理工大学工商管理学院, 广东 广州 510640;
    3. 中山大学粤港澳发展研究院, 广东 广州 510275;
    4. 淮北师范大学信息学院, 安徽 淮北 235000

收稿日期: 2015-09-07

  修回日期: 2016-05-30

  网络出版日期: 2017-06-29

基金资助

国家自然科学基金资助项目(71131003);广东省自然科学基金资助项目(2014A030310443);教育部人文社会科学基金资助项目(15YJC630138,15YJC630053);安徽省高等学校自然科学研究重点项目(KJ2015A335);广州市科技计划项目(201510010149)

Stable Structure of Purchasing Coalitions with Horizontal Competing Retailers in Distribution Supply Chains

Expand
  • 1. School of Business Administration, Guangzhou University, Guangzhou 510006, China;
    2. School of Business Administration, South China University of Technology, Guangzhou 510640, China;
    3. Institute of Guangdong Hong Kong and Macao Development Studies, Sun Yat-sen University Guangzhou 510275, China;
    4. Information College, Huaibei Normal University, Huaibei 235000, China

Received date: 2015-09-07

  Revised date: 2016-05-30

  Online published: 2017-06-29

摘要

本文针对由单一供应商和三个横向竞争零售商所组成的两层分销供应链系统,采用合作博弈论中描述远视参与者的最大一致集(LCS)概念,在供应商所提供的不同契约形式下,分别研究了横向竞争零售商采购联盟的远视稳定结构。研究发现,当供应商提供线性折扣契约时,根据供应商提供的折扣比例不同,横向竞争零售商的采购联盟结构是不同的,当折扣比例较低(小于0.5)时,横向竞争的零售商会形成仅两个零售商联合采购的联盟结构,将第三个零售商排除在联盟之外;而当折扣比例较高(大于0.5)时,横向竞争的远视零售商将只会形成大联盟,以增强共同的竞争力。但是,当供应商提供两部收费制折扣契约时,无论供应商所提供的折扣比例如何变化,横向竞争零售商都以三个零售商联合采购的大联盟为稳定结构。此外,通过数值例子发现,供应商提供其他形式的数量折扣契约时,横向竞争的远视零售商会以大联盟为稳定结构。

本文引用格式

肖旦, 周永务, 欣向, 昌文 . 分销供应链中零售商横向竞争下采购联盟的稳定结构[J]. 中国管理科学, 2017 , 25(4) : 33 -41 . DOI: 10.16381/j.cnki.issn1003-207x.2017.04.005

Abstract

Purchasing plays a very important role in the practical operations for some companies. Many companies will purchase jointly in order to reduce the operational cost. Although many purchasing coalitions collaborate on the procurement, they still compete in other fields such as order quantity or price. Therefore, there is an interesting problem needed to solve, that is, how the farsighted stable structure of purchasing coalitions will be. In a two-echelon distribution supply chain formed by a single supplier and three competing retailers, the farsighted stable structure of purchasing coalition among retailers is analyzed by using the concept of farsighted largest consistent set(LCS) in the cooperative game theory under different discount schedules. It is found that the stable structure of competing retailers' purchasing coalition depends on the discount scale when the supplier provides a linear discount schedule. If the discount scale is low (less than 0.5), horizontal competing retailers will form a two-retailer purchasing coalition, the third retailer will be ruled, and if the discount scale is higher (more than 0.5), horizontal competing retailers will form the grand purchasing coalition, in order to enhance the competitiveness. However, when the supplier provides a two-part tariff discount schedule, the stable structure is always the grand purchasing coalition regardless of discount scale. In addition, it is also found that the grand coalition will be the stable structure for the farsighted retailers under other discount schedules by the numerical examples. This paper will provide some reasonable and operational suggestions for farsighted retailers form coalitions.

参考文献

[1] Nalebuff B J, Brandenburger A. Co-opetition[M]. HarperCollins Publishers,1996.

[2] Hendrick T E. Purchasing consortiums:Horizontal alliances among firms buying common goods and services:What? Who? Why? How?[R]. Working Paper,Center for Advanced Purchasing Studies, 1997.

[3] Essig M. Purchasing consortia as symbiotic relationships:developing the concept of "consortium sourcing"[J]. European Journal of Purchasing & Supply Management, 2000, 6(1):13-22.

[4] Tella E, Virolainen V M. Motives behind purchasing consortia[J]. International Journal of Production Economics, 2005, 93-94:161-168.

[5] Ball D, Pye J. Library purchasing consortia:The UK periodicals supply market[J]. Learned Publishing, 2000, 13(1):25-35.

[6] Cachon G P. Supply chain coordination with contracts[M]//Graves S,de kok T. Handbook in operations research and management science:Supply chain management, North Holland:Amsterdam,2003:229-339.

[7] 周永务. 随机需求下两层供应链协调的一个批量折扣模型[J]. 系统工程理论与实践, 2006,(07):25-31.

[8] 许甜甜, 肖条军. 基于数量折扣的时滞变质物品库存协调模型[J]. 系统工程理论与实践, 2013,33(7):1690-1698.

[9] 刘斌, 马新迪, 张荣. 应急采购情形下短生命周期产品的团购策略分析[J]. 中国管理科学, 2013,(S1):183-189.

[10] 陈敬贤, 马志强, 孟庆峰. 线性量折扣方案下团购策略对渠道绩效的影响[J]. 中国管理科学, 2014,22(1):110-119.

[11] 刘春玲, 肖位春, 黎继子, 等. 基于Credit期权的集群式供应链采购模型及算法分析[J]. 中国管理科学, 2014,22(8):72-79.

[12] Hartman B C, Dror M, Shaked M. Cores of inventory centralization games[J]. Games and Economic Behavior, 2000, 31(1):26-49.

[13] Meca A, Timmer J, Garc1, et al. Inventory games[J]. European Journal of Operational Research, 2004, 156(1):127-139.

[14] Guardiola L A, Meca A, Puerto J. Production-inventory games:A new class of totally balanced combinatorial optimization games[J]. Games and Economic Behavior, 2009, 65(1):205-219.

[15] Nagarajan M, Bassok Y. A bargaining framework in supply chains:The assembly problem[J]. Management Science, 2008, 54(8):1482-1496.

[16] Granot D, Yin Shuya. Competition and cooperation in decentralized push and pull assembly systems[J]. Management Science, 2008, 54(4):733-747.

[17] Nagarajan M, Sosic G. Coalition stability in assembly models[J]. Operations Research, 2009, 57(1):131-145.

[18] 郑士源, 王浣尘. 基于动态合作博弈理论的航空联盟稳定性[J]. 系统工程理论与实践, 2009, 29(4):184-192.

[19] 曾银莲, 李军, 刘云霞. 基于最大一致集的合作运输联盟稳定性分析[J]. 系统科学与数学, 2015(10):1219-1232.

[20] Granot D, Sosic G. Formation of alliances in internet-based supply exchanges[J]. Management Science, 2005, 51(1):92-105.

[21] Nagarajan M, Sosic G. Stable farsighted coalitions in competitive markets[J]. Management Science, 2007, 53(1):29-45.

[22] 周永务, 肖旦, 汤勤深, 等. 分销供应链中竞争零售商联盟的稳定性[J]. 运筹与管理, 2013,22(4):50-59.

[23] Ha A Y, Tong Shilu. Contracting and information sharing under supply chain competition[J]. Management Science, 2008, 54(4):701-715.

[24] Schotanus F, Telgen J, De Boer L. Unraveling quantity discounts[J]. Omega, 2009, 37(3):510-521.

[25] Chwe M. Farsighted coalitional stability[J]. Journal of Economic Theory, 1994, 63(2):299-325.
文章导航

/