主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
论文

基于需求响应的智能电网实时电价谈判模型

展开
  • 1. 青岛大学数学与统计学院, 山东 青岛 266071;
    2. 上海理工大学管理学院, 上海 200093;
    3. IBM中国研究院, 上海 201203

收稿日期: 2015-09-18

  修回日期: 2016-04-02

  网络出版日期: 2017-05-27

基金资助

国家自然科学基金资助项目(71571108);国家自然科学基金国际(地区)合作交流项目(61661136002);山东省自然科学基金项目(ZR2015GZ007);中国博士后科学基金项目(2016M602104);青岛市博士后应用研究项目(2016033)

Real-time Pricing Contract Bargaining Based on Demand Response in Smart Grid

Expand
  • 1. College of Mathematics and Statistics, Qingdao University, Qingdao 266071, China;
    2. School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China;
    3. IBM China Research Laboratory, Shanghai 201203, China

Received date: 2015-09-18

  Revised date: 2016-04-02

  Online published: 2017-05-27

摘要

智能电网环境下的电力市场中,通过运用鲁宾斯坦的讨价还价思想,构造电力零售商与大用户间直接购买电力的短期实时定价谈判博弈模型。研究在电力零售商和大用户之间合同电量确定,但价格不确定的实时双边合同谈判过程,并对模型进行求解和分析,得到电力零售商和大用户能达成短期实时协议主要取决于双方谈判成本及各自对对方关于实时电力价格的预期估计。仿真模拟结果验证了分析结果的正确性并提供了谈判成功相应的参数选择范围。

本文引用格式

代业明, 高岩, 高红伟, 金锋 . 基于需求响应的智能电网实时电价谈判模型[J]. 中国管理科学, 2017 , 25(3) : 130 -136 . DOI: 10.16381/j.cnki.issn1003-207x.2017.03.015

Abstract

Recent years have witnessed the new challenges that have emerged in power grid. A special challenge is represented by peaks in the power demand of customers. The most promising solution to tackle the peak demand challenge is smart grid. Since power grids have little capacity to store energy, power demand and supply must balance at all times. As a consequence, demand response has become a powerful tool to solve the power needs of different users. Price response mechanism is the main research areas of demand response in smart grid, which mainly reflects the price and real-time power demand situation through dynamic pricing. The fixed power pricing is no longer suitable for modern electricity market. Thus, real-time pricing becomes the most promising demand response method, and the large users will also face real-time pricing bargaining with electricity retailers for reflecting the response behavior of users to real-time price.In fact, under the smart grid environment,the electricity generation, transmission and distribution are separated in electricity market, power price changes according to the real-time changes of the user power demand. The real-time short-term contracts is signed for power trading between large users and power retailers to ensure short-term electricity price is relatively stable. Therefore, retailers and large user need to bargain the contract price and the contract power amount to ensure that market participants can hedge the real-time price risk in the next time. In this paper, a incomplete information real-time bargaining game model between power retailer and large user is formulated under the smart grid environment by means of Rubinstein' ideas. Both sides of the bargaining determine their own strategies by estimating bargaining costs and strategies for each other according to the last bargaining result. Eventually, the next contract power price is determined. The results of the study show that successful bargaining between the two sides is mainly related to the conversion coefficient and prediction interval of real-time power price. We know also the bargaining is successful when the conversion coefficient is in the range between 0.8 and 1. At the same time, the payoff of retailers and large users increase with the increasing of conversion coefficient. Meanwhile, it is also found that the probabilities of success will increase when parameter breduces. So an real-time power market bargaining mechanism designed effectively is not only improve the efficiency of real-time power market, but also reach more long-term contract by choosing appropriate conversion coefficient and interval parameters, so as to optimize smart grid.

参考文献

[1] Kothari D P, Nagrath I J. Modern power systems (3rd Ed.)[M]. New Delhi:McGraw-Hill. 2009.

[2] Strbac G. Demand side management:Benefits and challe-nges[J]. Energy Policy, 2008, 36(12):4419-4426.

[3] Albadi M H, El-Saadany E F. Demand response in electricity markets:An overview[C]//Proceedings of Power Engineering Society General Meeting, June 24-28, 2007.

[4] 代业明, 高岩. 具有多类资源多类用户智能电网实时定价决策[J]. 系统工程理论实践, 2015, 35(9):2315-2323.

[5] Dai Yeming,Gao Yan. Real-time pricing decision based on leader-follower game in smart Grid[J]. Journal of Systems Science and Information, 2015, 3(4):348-356.

[6] Dai Yeming,Gao Yan. Real-time pricing decision making for retailer-wholesaler in smart grid based on game theory[J]. Abstract and Applied Analysis, 2014,(6):1-7.

[7] 罗斌, 黄晨雨. 基于系统动力学的我国居民电价政策动态决策模型[J]. 中国管理科学, 2013, 21(11):652-662.

[8] 李豪, 熊中楷, 彭志强. 竞争环境下基于顾客策略行为的易逝品动态定价研究[J]. 中国管理科学, 2011, 19(2):88-98.

[9] Tiptipakorn S, Lee W J. A residential consumer-centered load control strategy in real-time electricity pricing environment[C]//Proceedings of 39th North American. Power Symposium, September 30-Ootober 2, 2007.

[10] 李海, 崔南方, 徐贤浩. 基于讨价还价能力的双渠道供应链批发价谈判模式[J]. 管理工程学报, 2015, 29(4):124-132.

[11] Mathew J M. Power market auction design:Rules and lessons in market-based control for the new electricity industry[R]. Working Paper, Edison Electric Institute, 2001.

[12] Song Haili, Liu C C, Lawarree J. Nash equilibrium bidding strategies in a bilateral electricity market[J]. IEEE Tran sactions on Power Systems, 2002, 17(1):73-79.

[13] 张钦, 王锡凡, 王建学. 需求侧实时电价下供电商购售电风险决策[J]. 电力系统自动化, 2010, 34(3):22-27.

[14] 张富强, 文福拴, 颜汉荣,等. 计及风险的电力市场双边合同多阶段谈判模型[J]. 电力系统自动化, 2010,34(22):189-196.

[15] 赵飞, 周渝慧. 轮流出价博弈在制定大用户直供电价中的应用[J]. 电力系统及其自动化学报, 2008, 20(4):77-81.

[16] Kumar J V, Pasha S J, Kumar D M V. Strategic bidding in deregulated market using particle swarm optimizati on[C]//Proceedings of 2010 Annual IEEE India Conference, December 17-19, 2010:1-6.

[17] 张森林, 屈少青, 陈皓勇,等. 大用户直购中基于Q学习算法的多代理两阶段谈判策略[J]. 电力系统自动化, 2010, 34(6):37-41.

[18] 李国成, 肖庆宪. 一种布谷鸟-交叉熵混合优化算法及其性能仿真[J]. 上海理工大学学报, 2015, 37(2):180-186.

[19] 黄守军, 杨俊, 陈其安,等. 基于风险效益均衡的发电侧碳排放权交易差价合约谈判模型[J]. 中国管理科学, 2016, 24(1):124-133.

[20] 赵飞, 周渝慧. 轮流出价博弈在电力需求侧管理中的应用[J]. 电力需求侧管理, 2007, 9(5):21-23.

[21] 雷霞, 刘俊勇, 党晓强. 对电力大用户定价模式的研究[J]. 电力系统及其自动化学报, 2010, 22(3):60-66.

[22] 张森林, 张尧, 陈皓勇,等. 大用户参与电力市场双边交易的一种新模式[J]. 华东电力, 2010, 38(1):6-10.

[23] 郭兴磊, 张宗益, 亢娅丽,等. 基于CVaR模型的大用户直购电决策分析[J]. 电力系统保护与控制, 2011, 39(18):32-37.

[24] 刘春辉, 刘敏. 电力市场环境下考虑大用户直购电的电网公司风险管理研究[J]. 电力系统保护与控制, 2011, 39(12):94-101.

[25] 祝全乐, 马新顺, 苑津莎. 计及市场不确定性的大用户购电策略[J]. 华北电力大学学报, 2012, 39(2):70-73.

[26] 王雁凌, 刘诗宁. 基于等利润率变化率的大用户直接交易合同电价模型[J]. 电网技术, 2013, 37(8):2322-2327.

[27] 张宗益, 亢娅丽, 郭兴磊. 基于谱风险度量的大用户直购电组合模型分析[J]. 电工技术学报, 2013, 28(1):266-270.

[28] Kazempour S J, Conejo A J, Ruiz C. Strategic bidding for a large consumer[J]. IEEE Transactions on Power Systems, 2015, 30(2):848-856.

[29] Myerson R B. Game Theory[M]. Cambridge, Massachusetts:Harvard University Press, 2013.
文章导航

/